首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
Wireless mesh networks (WMNs) are considered as one of the outstanding technologies that provide cost-effective broadband Internet accesses to users. The off-the-shelf IEEE 802.11 PHY and MAC specifications support both multi-channel and multi-rate capabilities. However, designing an efficient channel assignment protocol that exploits both available channels and data rates is a critical issue to overcome the network performance degradation. In multi-rate wireless networks, high-rate links may severely suffer from throughput degradation due to the presence of low-rate links. This problem is often referred to as performance anomaly. In this paper, we design a Cooperative Channel Assignment (CoCA) protocol to consider the performance anomaly problem in multi-channel multi-rate WMNs. Based on the proposed family architecture, CoCA exploits the Estimated Delivery Time (EDT) metric and an efficient balancing algorithm. Using the EDT metric, CoCA performs channel assignments to form Multi-channel Multi-hop Paths (MMPs) so that CoCA separates high-rate links from low-rate links over different channels and increases the channel diversity. In addition, CoCA considers the performance anomaly problem and throughput fairness during channel assignments by utilizing the balancing algorithm. We evaluated the performance of CoCA through extensive simulations and found that CoCA outperforms existing well-known channel assignment protocols for WMNs.  相似文献   

2.
Providing multichannel functionality can improve the performance of wireless networks. Although off‐the‐shelf IEEE 802.11 physical layer and medium access control specifications support multiple channels and multiple data rates, one of the major challenges is how to efficiently utilize available channels and data rates to improve network performance. In multirate networks, low‐rate links severely degrade the capacity of high‐rate links, which is known as performance anomaly. To overcome the performance anomaly problem, different data rate links can get equal air‐time by exploiting time diversity and frequency diversity, or they can be separated over nonoverlapping channels. In this paper, we study existing multichannel protocols proposed to mitigate the performance anomaly problem by classifying them into single‐radio protocols, multiradio single‐hop protocols, and multiradio multihop protocols. To investigate the effectiveness of multichannel solutions for performance anomaly, we compare these protocols with well‐known multichannel protocols that do not consider performance anomaly. In addition, this paper gives insightful research issues to design multichannel protocols that mitigate performance anomaly in IEEE 802.11 wireless networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
IEEE 802.11 based wireless mesh networks with directional antennas are expected to be a new promising technology and an economic approach for providing wireless broadband services in rural areas. In this paper, we discuss interference models and address how they can affect the design of channel assignment in rural mesh networks. We present a new channel assignment framework based on graph coloring for rural wireless mesh networks. The goal of the framework is to allow synchronously transmitting or receiving data from multiple neighbor links at the same time, and continuously doing full-duplex data transfer on every link, creating an efficient rural mesh network without interference. Channel assignment is shown to be NP-hard. We frame this channel allocation problem in terms of Adjacent Vertex Distinguishing Edge Coloring (AVDEC). Detailed assignment results on grid topology are presented and discussed. Furthermore, we design an algorithm. Finally, we evaluate the perform- ance of the proposed algorithm through extensive simulations and show the algorithm is effective to the regular grid topologies, and the number of colors used by the algorithm is upper bounded by A ~ 1. Hence the algorithm guarantees that the number of channels available in standards such as IEEE 802.11a is sufficient to have a valid AVDEC for many grid topologies. We also evaluate the proposed algorithm for arbitrary graphs. The algorithm provides a lower upper bound on the minimum number of channels to the AVDEC index channel assignment problem.  相似文献   

4.
The multi-rate transmission mechanism in IEEE 802.11 can improve its reliability and robustness. However, it causes a performance anomaly. After analyzing the reasons for the performance anomaly in multi-rate mechanism, we propose a new scheme to solve the performance anomaly. By adjusting packet size according to the transmission rate, this scheme guarantees that these nodes with different transmit rates can access wireless channel fairly. Theoretical analysis and performance evaluation show that the proposed scheme can well solve the performance anomaly problem.  相似文献   

5.
The IEEE 802.11 DCF and EDCA mechanisms based on CSMA/CA are the most widely used random channel access mechanisms in wireless mesh networks (WMNs), but unfortunately these cannot effectively eliminate hidden terminal and exposed terminal problems in multi-hop scenarios. In this paper, we propose a set of efficient multi-radio multi-channel (MRMC) assignment, scheduling and routing protocols based on Latin squares for WMNs with MRMC communication capabilities, called “M4”, i.e., the Multiple access scheduling in Multi-radio Multi-channel Mesh networking. M4 uses nodal interference information to form cliques for inter-cluster and intra-cluster inWMNs, and then applies Latin squares to map the clique-based clustering structure to radios and channels for communication purposes. Then, M4 again applies Latin squares to schedule the channel access among nodes within each cluster in a collision-free manner. From a systematic view, we also design the corresponding MRMC routing to support M4 communication. Extensive simulation results show that M4 achieves much better performance than IEEE 802.11 standards and other channel access control protocols.  相似文献   

6.
In this paper, we consider multi-hop wireless mesh networks, where each router node is equipped with multiple radio interfaces and multiple channels are available for communication. We address the problem of assigning channels to communication links in the network with the objective of minimizing overall network interference. Since the number of radios on any node can be less than the number of available channels, the channel assignment must obey the constraint that the number of different channels assigned to the links incident on any node is atmost the number of radio interfaces on that node. The above optimization problem is known to be NP-hard. We design centralized and distributed algorithms for the above channel assignment problem. To evaluate the quality of the solutions obtained by our algorithms, we develop a semidefinite program and a linear program formulation of our optimization problem to obtain lower bounds on overall network interference. Empirical evaluations on randomly generated network graphs show that our algorithms perform close to the above established lower bounds, with the difference diminishing rapidly with increase in number of radios. Also, ns-2 simulations as well as experimental studies on testbed demonstrate the performance potential of our channel assignment algorithms in 802.11-based multi-radio mesh networks.  相似文献   

7.
OAR: An Opportunistic Auto-Rate Media Access Protocol for Ad Hoc Networks   总被引:1,自引:0,他引:1  
The IEEE 802.11 wireless media access standard supports multiple data rates at the physical layer. Moreover, various auto rate adaptation mechanisms at the medium access layer have been proposed to utilize this multi-rate capability by automatically adapting the transmission rate to best match the channel conditions. In this paper, we introduce the Opportunistic Auto Rate (OAR) protocol to better exploit durations of high-quality channels conditions. The key mechanism of the OAR protocol is to opportunistically send multiple back-to-back data packets whenever the channel quality is good. As channel coherence times typically exceed multiple packet transmission times for both mobile and non-mobile users, OAR achieves significant throughput gains as compared to state-of-the-art auto-rate adaptation mechanisms. Moreover, over longer time scales, OAR ensures that all nodes are granted channel access for the same time-shares as achieved by single-rate IEEE 802.11. We describe mechanisms to implement OAR on top of any existing auto-rate adaptation scheme in a nearly IEEE 802.11 compliant manner. We also analytically study OAR and characterize the delay jitter and the gains in throughput as a function of the channel conditions. Finally, we perform an extensive set of ns-2 simulations to study the impact of such factors as node velocity, channel conditions, and topology on the throughput of OAR.  相似文献   

8.
The use of multiple channels in 802.11 wireless local area networks can improve network performance. Many efforts have been done to better exploit multiple non‐overlapped channels. However, the number of orthogonal channels in the Institute of Electrical and Electronics Engineers 802.11 standards is very much limited. Recent studies indicate that we can improve the full‐range channel utilization and the network throughput by properly utilizing the partially overlapping channels. However, little work was focused on channel assignment for partially overlapping channels. In this paper, we investigate the problem of partially overlapping channel assignment to improve the performance of 802.11 wireless networks based on the Signal to Interference–Noise Ratio interference model. Using the Signal to Interference–Noise Ratio model, we deduce a direct relationship between maximizing system throughput and minimizing total interference when partially overlapping channels are employed. After that, we propose a greedy method to minimize the total interference for throughput maximization. We evaluate our algorithm through extensive simulations and compare its performances with those of the state‐of‐the‐art. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Endowing mesh routers with multiple radios is a recent solution to improve the performance of wireless mesh networks. The consequent problem to assign channels to radios has been recently investigated and its relation to the routing problem has been revealed. The joint channel assignment and routing problem has been shown to be NP-complete and hence mainly heuristics have been proposed. However, such heuristics consider wireless links just like wired links, whereas disregarding their peculiar features. In this paper, we consider the impact of tuning the transmission power and rate of the wireless links on the efficiency of the channel assignment. Then, we present a channel, power and rate assignment heuristic and compare its performance to previously proposed algorithms.  相似文献   

10.
To compensate for the effects of fading in wireless channels, IEEE 802.11 systems utilize a rate‐adaptation mechanism to accomplish a multi‐rate capability. However, the IEEE 802.11 distributed coordination function results in a fundamental performance anomaly in multi‐rate networks; namely, when stations with different transmission rates collide, the throughput performance of the high‐rate station is significantly degraded by the relatively longer channel occupancy time of the low‐rate station. This study resolves this problem through the use of an enhanced high‐performance distributed coordination function (EHDCF) protocol. While most existing solutions to the multi‐rate performance anomaly problem have the form of simple contention‐based protocols, EHDCF has two modes, namely a contending mode and an active mode. In the proposed protocol, new stations joining the network are assigned a contending mode, but switch to an active node (and are therefore permitted to transmit data packets) as soon as they have gained access to the channel. Having transmitted a data packet, the active node then selects the next transmission station in accordance with a probability‐based rule designed such that the high‐rate stations within the network receive a greater number of transmission opportunities than the low‐rate stations. The simulation results show that the EHDCF protocol not only yields a significant improvement in the network throughput but also guarantees the temporal fairness of all the stations. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In today's IEEE 802.11 Wireless LANs (WLANs), e.g., the popular IEEE 802.11 b, stations support multiple transmission rates, and use them adaptively depending on the underlying channel condition via link adaptation. It has been known that when some stations use low transmission rates due to bad channel conditions, the performance of the stations using high rates is heavily degraded, and this phenomenon is often referred to as performance anomaly. In this paper, we model the WLAN incorporating stations with multiple transmission rates in order to demonstrate the performance anomaly analytically. Note that all the previously proposed models of the IEEE 802.11 assume a single transmission rate. We also develop possible remedies to improve the performance. Our solution is basically to control the access parameters such as the initial backoff window, the frame size, and the maximum backoff stage, depending on the employed transmission rate. Throughout simulations, we demonstrate that our analytical model is accurate, and the proposed mechanism can indeed provide the remedies to the performance anomaly by increasing the aggregate throughput up to six times.  相似文献   

12.
基于IEEE 802.11高速无线局域网的速率自适应MAC协议研究   总被引:3,自引:0,他引:3  
目前的IEEE 802.11标准在物理层提供了对多种发送速率的支持,然而在MAC层却没有规定速率自适应的方法。该文研究了高速IEEE 802.11 无线局域网中的速率自适应方案。首先,提出了EACK协议,EACK使用基本速率发送MAC头,并在ACK帧中携带信道信息,因而能够较快速地响应信道的变化,同时具有少的开销;其次,在EACK基础上,提出了一种恒定发送时间(CEACK)的策略,CEACK能够克服传统IEEE 802.11 DCF MAC协议的理论吞吐量上限,并且具有更好的时间公平性能,能够应用于高速的无线局域网。  相似文献   

13.
In this paper, we study the performance of IEEE 802.11a/b in a large-scale mobile railway networks and introduce our developed passive measurement approach. To provide a comprehensive evaluation, we built an outdoor multi-hop multi-interface railroad testbed (UNL-FRA Testbed), which consists of eight access points deployed along 3.5 mile of railroad track. We propose a novel large-scale passive measurement approach that synchronizes the system clocks of our monitoring systems, merges packet traces collected from multiple wireless channels across a multi-hop network, and enables a global performance view for the entire monitored network and across multiple layers. Based on the testing data collected from 15 field experiments carried out using BNSF locomotives and HyRail vehicles over a period of 18 months we conclude that in typical outdoor 802.11 railway environments the wireless link quality, the channel assignment scheme, and the handoff latency have much more significant impacts on the performance than the velocity. Furthermore, we discuss the implications of our conclusions on guaranteeing the quality of mobile services. We believe this is the first analysis on such a scale for 802.11-family railway networks.  相似文献   

14.
Ad hoc communication is gaining popularity, not only for pure ad hoc communication networks but also as a viable solution for coverage extension in wireless networks. Especially for upcoming WLAN hotspots, this is an interesting option to decrease installation costs. In this article we introduce a new MAC protocol that needs only marginal changes to the standard and enables efficient multihop networking. We advocate the use of multiple IEEE 802.11 channels, where one channel is reserved as a common signalling channel for the task of assigning the others (data channels) among wireless terminals. The proposed MAC protocols are based on a four-way handshake over the common signalling channel, while data transmission occurs on a dedicated channel. We propose a further optimization applying multiple wireless network interface cards. This improvement in performance comes at the price of a slightly more complex hardware. Two different simulation models are implemented to investigate our approach. The first model investigates the MAC protocol and its improvements, while the second model analyzes the multihop performance in terms of delivery ratio and transmission delay. BY means of numerous simulations we present the performance of our MAC approach in comparison with two standard approaches in terms of bandwidth, packet delivery, and transmission delay. For our performance evaluation we apply the IEEE 802.11a technology, but we note that our approach can also be used for IEEE 802.11b.  相似文献   

15.
Single-channel based wireless networks have limited bandwidth and throughput and the bandwidth utilization decreases with increased number of users. To mitigate this problem, simultaneous transmission on multiple channels is considered as an option. In this paper, we propose a distributed dynamic channel allocation scheme using adaptive learning automata for wireless networks whose nodes are equipped with single-radio interfaces. The proposed scheme, Adaptive Pursuit learning automata runs periodically on the nodes, and adaptively finds the suitable channel allocation in order to attain a desired performance. A novel performance index, which takes into account the throughput and the energy consumption, is considered. The proposed learning scheme adapts the probabilities of selecting each channel as a function of the error in the performance index at each step. The extensive simulation results in static and mobile environments provide that the proposed channel allocation schemes in the multiple channel wireless networks significantly improves the throughput, drop rate, energy consumption per packet and fairness index—compared to the 802.11 single-channel, and 802.11 with randomly allocated multiple channels. Also, it was demonstrated that the Adaptive Pursuit Reward-Only (PRO) scheme guarantees updating the probability of the channel selection for all the links—even the links whose current channel allocations do not provide a satisfactory performance—thereby reducing the frequent channel switching of the links that cannot achieve the desired performance.  相似文献   

16.
A MAC-Layer QoS Provisioning Protocol for Cognitive Radio Networks   总被引:1,自引:1,他引:0  
Due to the proliferation of diverse network devices with multimedia capabilities, there is an increasing need for Quality of Service (QoS) provisioning in wireless networks. The MAC layer protocol with enhanced distributed channel access (EDCA) in the IEEE 802.11-2007 is able to provide differentiated QoS for different traffic types in wireless networks through varying the Arbitration Inter-Frame Spaces (AIFS) and contention window sizes. However, the performance of high priority traffic can be seriously degraded in the presence of strong noise over the wireless channels. Schemes utilizing adaptive modulation and coding (AMC) technique have also been proposed for the provisioning of QoS. They can provide limited protection in the presence of noise but are ineffective in a high noise scenario. Although multiple non-overlapped channels exist in the 2.4 and 5?GHz spectrum, most IEEE 802.11-based multi-hop ad hoc networks today use only a single channel at anytime. As a result, these networks cannot fully exploit the aggregate bandwidth available in the radio spectrum provisioned by the standards. By identifying vacant channels through the use of cognitive radios technique, the noise problem can be mitigated by distributing network traffic across multiple vacant channels to reduce the node density per transmission channel. In this paper, we propose the MAC-Layer QoS Provisioning Protocol (MQPP) for 802.11-based cognitive radio networks (CRNs) which combines adaptive modulation and coding with dynamic spectrum access. Simulation results demonstrate that MQPP can achieve better performance in terms of lower delay and higher throughput.  相似文献   

17.
Recently, growth in smart devices has increased along with the number of wireless nodes in wireless local area networks (WLANs). The increased number of nodes causes throughput degradation due to frequent collisions between nodes. In multi-rate environments, transmission at low data rates limits the throughput of WLANs, and we call it performance anomaly. The time fairness approach has been proposed to resolve the performance anomaly. However, in the time fairness approach, nodes, which transmit at low data rates, experience lower throughput than in the IEEE 802.11 standard. In this paper, we propose a new medium access control (MAC) protocol, called partition and cooperation based MAC (PCMAC), to simultaneously solve these problems including frequent collisions, performance anomaly, and low throughput under time fairness scheme. First, we calculate the optimum number of nodes, which maximizes the data transmission time, for each data rate. Second, for resolving performance anomaly and reducing collisions, we divide the nodes into several partitions based on the data rate and the optimum number of nodes. Each partition has a different transmission time slot that is proportional to the number of nodes. Finally, we propose a cooperative communication scheme using a relay partition to improve the throughput of nodes with low data rates and to achieve robust cooperative transmission. PCMAC is evaluated through extensive simulation and simulation with measured data. The results show that our scheme effectively improves WLAN performance.  相似文献   

18.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
A Cross-layer Approach to Channel Assignment in Wireless Ad Hoc Networks   总被引:1,自引:0,他引:1  
To improve the capacity of wireless ad hoc networks by exploiting multiple available channels, we propose a distributed channel assignment protocol that is based on a cross-layer approach. By combining channel assignment with routing protocols, the proposed channel assignment protocol is shown to require fewer channels and exhibit lower communication, computation, and storage complexity than existing channel assignment schemes. A multi-channel MAC (MC-MAC) protocol that works with the proposed channel assignment protocol is also presented. We prove the correctness of the proposed channel assignment protocol. In addition, through a performance study, we show that the proposed protocol can substantially increase throughput and reduce delay in wireless ad hoc networks, compared to the IEEE 802.11 MAC protocol and an existing multi-channel scheme.
Shiwen MaoEmail:
  相似文献   

20.
In this paper, we focus on call admission control (CAC) in IEEE 802.11 multi-radio multi-rate multi-channel (MR2-MC) wireless mesh networks (WMNs). CAC is the key component of QoS routing protocols. The goal of CAC is to protect existing flows from QoS violations and fully utilize available radio resource on channels. We propose a CAC mechanism, called Contention-Aware Multi-channel Call Admission Control (CMC), for MR2-MC WMNs based on IEEE 802.11 DCF. CMC is fully distributed, relies on local information to estimate the residual bandwidth of a path, and can be integrated into existing routing protocols for MR2-MC WMNs to provide QoS. We evaluate the performance of CMC via ns-2 simulations. The results show that CMC can precisely predict the end-to-end residual bandwidths of paths, successfully protects existing flows from QoS violations, and fully utilizes the bandwidths on channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号