首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supplementing pasture-fed dairy cows with concentrates in early lactation was hypothesized to result in an earlier postpartum recoupling of the somatotropic axis in New Zealand (NZ)-type Holstein-Friesian dairy cows than in North American (NA)-type cows. To test this hypothesis, NA (n = 30) and NZ (n = 30) cows were allocated to 1 of 3 supplementation strategies (0, 3, or 6 kg of dry matter concentrate/d) for the first 12 wk of lactation in a completely randomized design and a 2 × 3 factorial arrangement. Production traits and characteristics of the somatotropic axis were studied at phenotypic, hormonal, and gene expression levels. Milk production and plasma metabolite concentrations were measured weekly, and liver was biopsied in wk 1, 4, 8, and 12 postcalving. North American cows produced more milk and displayed a larger degree of somatotropic axis uncoupling than did NZ cows. This was evident in strain differences in body condition score, blood growth hormone, and insulin-like growth factor-1 concentrations, and hepatic expression of growth hormone receptor-1a. No strain × diet interactions were observed for any characteristic of the somatotropic axis at either the blood metabolite or gene expression level; however, blood insulin concentrations during wk 7 to 11 postpartum increased with concentrate supplementation in NZ but not NA cows. These results demonstrate that feeding supplements does not result in an earlier recoupling of the somatotropic axis; however, the greater blood insulin concentrations with concentrate feeding in NZ cows from wk 7 may result in an earlier recoupling in this genetic strain, after the period investigated in this study. Further research is required to understand differences in insulin control between these genetic strains.  相似文献   

2.
Fifty-six genetically divergent New Zealand and North American Holstein-Friesian (HF) cows grazed pasture, and were offered 0, 3, or 6 kg of concentrate DM/cow per day for an extended lactation (605 ± 8.3 d in milk; mean ± standard error of the mean). Weekly blood samples collected from individual cows from wk 1 to 10 postpartum (early lactation), and from wk 47 to 63 postpartum (extended lactation) were analyzed for nonesterified fatty acids (NEFA), glucose, insulin, leptin, growth hormone (GH), insulin-like growth factor-I (IGF-I), calcium, and urea. During early lactation, NEFA and GH concentrations were greater and IGF-I concentrations were less, and increased at a slower rate in North American HF. During this 10-wk period, there were no strain effects on plasma glucose, leptin, insulin, or calcium. During the extended lactation period, North American HF had greater NEFA and GH concentrations; there were strain × diet interactions for insulin and leptin, and a tendency for a strain × diet interaction for glucose. These interactions were primarily due to greater plasma insulin, leptin, and glucose concentrations in the New Zealand HF fed 6 kg of concentrate DM/cow per day, a result of excessive body condition in this treatment. In this period, there was no strain effect on plasma IGF-I, calcium, or urea concentration. During early lactation, there was a linear increase in glucose and IGF-I, and a linear decrease in GH and urea with increasing concentrate in the diet. However, plasma calcium, NEFA, insulin, and leptin remained unchanged. During the extended lactation period, there was an effect of feed supplementation on GH and urea, which decreased linearly with increasing concentrate in the diet. There was, however, no supplementation effect on NEFA, calcium, or IGF-I. These data indicate potential strain differences in recoupling of the somatotropic axis, insulin resistance, and energy partitioning, and may help explain the physiology behind the previously reported greater milk production and body condition score loss in North American HF. The results have implications for breeding and diet management during an extended lactation.  相似文献   

3.
Data from 113 lactations across 76 cows between the years 2002 to 2004 were used to determine the effect of strain of Holstein-Friesian (HF) dairy cow and concentrate supplementation on milk production, body weight (BW), and body condition score (BCS; 1 to 5 scale) lactation profiles. New Zealand (NZ) and North American (NA) HF cows were randomly allocated to 1 of 3 levels of concentrate supplementation [0, 3, or 6 kg of dry matter (DM)/cow per d] on a basal pasture diet. The Wilmink exponential model was fitted within lactation (YDIM = a + b e(−0.05 × DIM) + c × DIM). The median variation explained by the function for milk yield was 86%, between 62 and 69% for milk composition, and 80 and 70% for BW and BCS, respectively. North American cows and cows supplemented with concentrates had greater peak and 270-d milk yield. Concentrate supplementation tended to accelerate the rate of incline to peak milk yield, but persistency of lactation was not affected by either strain of HF or concentrate supplementation. No significant strain by diet interaction was found for parameters reported. New Zealand cows reached nadir BCS 14 d earlier and lost less BW (22 kg) postcalving than NA cows. Concentrate supplementation reduced the postpartum interval to nadir BW and BCS, and incrementally increased nadir BCS. New Zealand cows gained significantly more BCS (i.e., 0.9 × 10−3 units/d more) postnadir than NA cows, and the rate of BCS replenishment increased linearly with concentrate supplementation from 0.5 × 10−3 at 0 kg of DM/d to 0.8 × 10−3 and 1.6 × 10−3 units/d at 3 and 6 kg of DM/d concentrates, respectively. Although there was no significant strain by diet interaction for parameters reported, there was a tendency for a strain by diet interaction in 270-d BCS, suggesting that the effect of concentrate supplementation on BCS gain was, at least partly, strain dependent.  相似文献   

4.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.  相似文献   

5.
The somatotropic axis [including growth hormone (GH), GH receptor, and insulin-like growth factor (IGF)-I] is uncoupled in high-producing cows in early lactation so that the liver fails to respond to GH and produces less IGF-I. This uncoupling was implicated in the process of nutrient partitioning, enabling high milk production. Different genetic selection goals may affect functional components of the somatotropic axis. Thus, the somatotropic axis was examined in diverse genetic strains of dairy cows [North American Holstein 1990 (NA90), New Zealand Holstein-Friesian 1990 (NZ90), and New Zealand Holstein-Friesian 1970 (NZ70)] that were managed similarly within a pasture-based system but were offered feed allowances commensurate with their genetic ability to produce milk. The NA90 cows produced more milk (26.2 ± 0.3, 24.1 ± 0.3, and 20.1 ± 0.4 kg/d, for NA90, NZ90, and NZ70, respectively), but had lower milk fat percentages (4.28 ± 0.03, 4.69 ± 0.03, and 4.58 ± 0.04 kg/d for NA90, NZ90, and NZ70, respectively) compared with both NZ strains. Milk protein percentages (3.38 ± 0.02, 3.52 ± 0.02, and 3.29 ± 0.03 kg/d for NA90, NZ90, and NZ70, respectively) were greater for NZ90 cows. During early lactation (wk 2 to 6), the total net energy produced in milk was greater in NA90 compared with NZ90 or NZ70 cows, but total net energy in milk after wk 6 was equivalent for NA90 and NZ90 cows. The greater milk production in early lactation in NA90 cows was associated with lower body condition scores (BCS; 1 to 10 scale; 4.0 ± 0.1) elevated blood GH concentrations (1.6 ± 0.1 ng/mL), and low blood IGF-I concentrations (14.8 ± 1.1 ng/mL), indicating an uncoupled somatotropic axis. In comparison, the NZ70 cows retained a coupled somatotropic axis during early lactation, maintaining greater BCS (4.6 ± 0.1), lower blood GH (0.7 ± 0.1 ng/mL), and greater blood IGF-I (21.9 ± 1.2 ng/mL). The degree of uncoupling in NZ90 cows was intermediate between the other 2 strains. Additional feed allowance failed to change blood IGF-I concentrations in NA90 cows but increased IGF-I concentrations in NZ90 cows (20.9 ± 1.4 and 13.2 ± 1.4 ng/mL for the high and low feed allowance, respectively). Furthermore, additional feed allowance in NZ90 cows lessened BCS loss in early lactation, but did not affect BCS loss in NA90 cows. Functional components of the somatotropic axis differed for the respective strains and were consistent with strain differences in milk production, BCS, and feed allowance.  相似文献   

6.
Continuous selection of dairy cows for production traits may alter the regulation of metabolic pathways. High-producing North American (NA) cows produce more milk and have a larger degree of somatotropic axis uncoupling than less intensively selected New Zealand (NZ) cows. The objective of this study was to determine if production-based selection priorities (i.e., NA cows) have altered the regulation of the gluconeogenic pathway relative to selection priorities based on production traits (i.e., NZ cows). In this study conducted in New Zealand, NZ (n=27) and NA cows (n=27) were monitored from 1 wk before calving to 12 wk post-calving. Cows were pasture-fed and supplemented with 0, 3, or 6 kg of concentrate DM/d. Liver biopsy samples were collected at 0, +1, and +4 wk relative to calving (WRTC) for mRNA analysis. Milk production of NA cows was greater during wk 5 to 11 postpartum and concentrate supplementation increased milk production for both NA and NZ cows. No genotype (NA vs. NZ) by diet interaction occurred for blood glucose, NEFA, or insulin. Expression of pyruvate carboxylase (PC) mRNA was increased at +1 and +4 WRTC compared with 0 WRTC (3.04 and 2.42 vs. 1.25±0.13 arbitrary units, respectively: mean ± standard error of the means) and expression of cytosolic phosphoenolpyruvate carboxykinase mRNA was increased at +4 compared with calving and +1 WRTC (4.78 vs. 2.18 and 2.48±1.41 arbitrary units, respectively). Expression of PC mRNA tended to be greater in NZ cows and tended to decrease with concentrate supplementation in both NZ and NA cows. The responses of NZ and NA cows to the transition to lactation and concentrate supplementation appeared to be similar; however, NZ cattle had a higher basal expression of PC.  相似文献   

7.
Ghrelin is an endogenous ligand of the growth hormone secretagogue receptor, and a potent orexigenic agent in human and rodent studies. We hypothesized that ghrelin may play a role in the reduced grazing time in dairy cows receiving supplementary feeds. Fifty-eight Holstein-Friesian (HF) dairy cows of New Zealand (NZ; n = 28) and North American (NA; n = 30) ancestry were provided with unrestricted access to pasture and randomly allocated at calving to either 0, 3, or 6 kg of dry matter concentrates in a 2 × 3 factorial arrangement. Concentrates were offered in equal amounts at each milking. In peak lactation (75 and 79 ± 19.7 d in milk), blood was sampled from all cows prior to the a.m. milking (i.e., baseline) and following 2 h of unrestricted access to fresh pasture after the a.m. milking on 2 consecutive weeks. Daily milk yield and fat, protein, and lactose concentrations were measured on the day of blood sampling. North American cows produced more milk and consumed numerically more pasture than did NZ cows, and NA cows had elevated plasma ghrelin concentrations pre- and postfeeding. A negative association between dry matter intake and postprandial ghrelin concentrations indicated that other controlling factors may be involved. Circulating ghrelin concentrations before feeding were not affected by concentrate supplementation, but increasing supplementation was associated with a linear decline in pasture intake and postprandial ghrelin concentrations. This negative association between concentrate supplementation and plasma ghrelin concentrations offers a potential neuroendocrine basis for the reduced pasture intake when supplements are offered to cows in grazing systems.  相似文献   

8.
The aim of this study was to test the feasibility of extended lactations in pastoral systems by using divergent dairy cow genotypes [New Zealand (NZ) or North American (NA) Holstein-Friesian (HF)] and levels of nutrition (0, 3, or 6 kg/d of concentrate dry matter). Mean calving date was July 28, 2003, and all cows were dried off by May 6, 2005. Of the 56 cows studied, 52 (93%) were milking at 500 d in milk (DIM) and 10 (18%) were milking at 650 DIM. Dietary treatments did not affect DIM (605 ± 8.3; mean ± SEM). Genotype by diet interactions were found for total yield of milk, protein, and milk solids (fat + protein), expressed per cow and as a percentage of body weight. Differences between genotypes were greatest at the highest level of supplementation. Compared with NZ HF, NA HF produced 35% more milk, 24% more milk fat, 25% more milk protein, and at drying off had 1.9 units less body condition score (1 to 10 scale). Annualized milk solids production, defined as production achieved during the 24-mo calving interval divided by 2 yr, was 79% of that produced in a normal 12-mo calving interval by NZ HF, compared with 94% for NA HF. Compared with NZ HF, NA HF had a similar 21-d submission rate (85%) to artificial insemination, a lower 42-d pregnancy rate (56 vs. 79%), and a higher final nonpregnancy rate (30 vs. 3%) when mated at 451 d after calving. These results show that productive lactations of up to 650 d are possible on a range of pasture-based diets, with the highest milk yields produced by NA HF supplemented with concentrates. Based on the genetics represented, milking cows for 2 yr consecutively, with calving and mating occurring every second year, may exploit the superior lactation persistency of high-yielding cows while improving reproductive performance.  相似文献   

9.
This experiment compared Holstein-Friesian (HF) cows of New Zealand (NZ) origin representative of genetics present in the 1970s (NZ70; n = 45) and 1990s (NZ90; n = 60), and a group of HF cows of North American origin with 1990s genetics (NA90; n = 60), which were managed in grazing systems with a range of feeding allowances (4.5 to 7.0 t/cow per yr) over 3 yr. The NZ70 cows had the lowest Breeding Worth genetic index and the lowest breeding values for yields of fat, protein, and milk volume; the NZ90 and NA90 cows were selected to have similar breeding values for milk traits and were representative of cows of high genetic merit in the 1990s. The NZ90 cows had a higher milk protein concentration (3.71%) than either the NA90 (3.43%) or the NZ70 cows (3.41%), and a higher milk fat concentration (4.86%) than the NA90 cows (4.26%) with a level similar to the NZ70 cows (4.65%). The NZ90 cows produced significantly greater yields of fat, protein, and lactose than the NA90 and NZ70 cows. The NZ70 cows had the lowest mean annual body weight (473 kg) but the highest body condition score (BCS; 5.06). Days in milk were the same for the 2 NZ strains (286 d in milk), both of which were greater than the NA90 cows (252 d in milk). There was no genotype × environment interaction for combined milk fat and protein yield (milksolids), with NZ90 producing 52 kg/cow more than the NA90 at all feeding levels. The NZ70 strain had the highest seasonal average BCS (5.06), followed by the NZ90 (4.51) and the NA90 (4.13) strains on a 1 to 10 scale. Body condition score increased with higher feeding levels in the 2 NZ strains, but not in the NA strain. The first-parity cows commenced luteal activity 11 d later than older cows (parities 2 and 3), and the NA90 cows commenced luteal activity 4 and 10 d earlier than the NZ70 and NZ90 cows. Earlier estrus activity did not result in a higher in-calf rate. The NZ70 and NZ90 cows had similar in-calf rates (pregnancy diagnosed to 6 wk; 69%), which were higher than those achieved by NA90 cows (54%). Results showed that the NA90 strain used in this experiment was not suitable for traditional NZ grazing systems. Grazing systems need to be modified if the NA90 strain is to be successfully farmed in NZ. The data reported here show that the NA90 cows require large amounts of feed, but this will not prevent them from having a lower BCS than the NZ strains. Combined with poor reproductive performance, this means that NA90 cows are less productive than NZ HF in pasture-based seasonal calving systems with low levels of supplementation.  相似文献   

10.
The objective of this study was to establish the influence of daily herbage allowance (DHA) and supplementation level offered to spring-calving dairy cows in early lactation on animal performance throughout lactation. Sixty-six Holstein-Friesian dairy cows were randomly assigned to a 6-treatment grazing study. The treatments comprised 3 DHA levels (13, 16, and 19 kg of DM/cow; >4 cm) and 2 concentrate supplementation levels (0 and 4 kg of DM/cow per day). Treatments were imposed from February 21 to May 8 (period 1; P1). During the subsequent 4-wk (period 2; P2), animals were offered a DHA of 20 kg of DM/cow and no concentrate. Subsequently, all animals grazed as a single herd to the end of lactation. Sward quality was homogeneous throughout lactation. A low DHA increased sward utilization (+14%) but reduced milk, solids-corrected milk, protein, and lactose yields compared with a high DHA during P1. Concentrate supplementation significantly increased milk, solids-corrected milk, fat, protein, and lactose yields during P1. The positive effect of concentrate supplementation remained throughout P2. A total concentrate input of 380 kg of DM/cow increased total lactation milk (+432 kg), solids-corrected milk (+416 kg), fat (+18 kg), protein (+15 kg), and lactose (+23 kg) yields. Greater P1 body weights were recorded when a high DHA and concentrate were offered. The P1 treatment had no effect on body condition score throughout lactation. The results indicate that offering a low DHA in early spring does not adversely affect total milk production, body weight, or body condition score, and offering concentrate results in a greater total lactation milk production performance.  相似文献   

11.
Poor reproductive performance limits cow longevity in seasonal, pasture-based dairy systems. Few differences in ovarian dynamics have been reported in different strains of Holstein-Friesian cows, implying that the uterine environment may be a key component determining reproductive success. To test the hypothesis that the uterine environment differs among genetic strains of the Holstein-Friesian cow, endometrial fatty acids (FA) were analyzed from New Zealand (NZ), and North American (NA) Holstein-Friesian cows. The effect of reproductive status was also investigated, with cows from both Holstein-Friesian strains slaughtered on either d 17 of the estrous cycle (termed cyclic) or d 17 of pregnancy (after embryo transfer; termed pregnant). Endometrial tissues were collected from 22 cows (NZ pregnant, n = 6; NZ cyclic, n = 4; NA pregnant, n = 6; NA cyclic, n = 6), and FA composition was analyzed. Daily plasma progesterone concentrations, milk production, milk FA composition, body weight, and body condition score were determined. Milk yield (4% fat-corrected milk) was similar for the NZ (28.5 kg/d) and NA (29.3 kg/d; SE 2.07 kg/d) cows, but NZ cows had a greater mean milk fat percentage. Mean plasma progesterone concentrations were significantly greater in NZ cows. Plasma progesterone concentrations were similar in the pregnant and cyclic groups. Mean length of the trophoblast recovered from the pregnant cows (NZ: 20.8 ± 2.84 cm; NA: 27.9 ± 10.23 cm) was not affected by genetic strain. Endometrial tissues from NZ cows contained greater concentrations of C17:0, C20:3n-3, and total polyunsaturated FA. The endometria from pregnant cows contained greater concentrations of C17:0, C20:2, and C20:3n-6, and less C20:1, C20:2, C20:5n-3. The observed changes in endometrial FA between Holstein-Friesian cows of different genetic origins or reproductive states may reflect differences in endometrial function and may affect reproductive function.  相似文献   

12.
Understanding how dairy cows adjust their grazing behavior in response to feed supplements is important for the development of management strategies that optimize profit from supplementation. New Zealand Holstein-Friesian (HF) cows have been selected for milk production on a predominantly pasture-based diet; in comparison, HF cows of North American (NA) ancestry have been selected almost exclusively for milk yield and fed diets high in nonfiber carbohydrates (NFC). We hypothesized, therefore, that supplementation would have differing effects on grazing behavior, pasture dry matter intake (DMI), and milk production in these genetic strains at peak, mid, and late lactation. A study was conducted over 2 consecutive lactations, with NA and NZ cows randomly allocated at calving to 0, 3, or 6 kg of dry matter/day concentrate plus unrestricted access to pasture. Pasture DMI, milk production, and grazing behavior were recorded at peak, mid, and late lactation. Concentrates were fed in equal amounts at morning and afternoon milking. The NA cows produced more milk and milk components, and had a greater pasture DMI, despite spending less time grazing. Declines in time spent grazing and pasture DMI were associated with increasing concentrate DMI. Grazing behavior following morning supplementation was different from that recorded following afternoon supplementation. Grazing ceased following morning supplementation before rumen fill could be a limiting factor, and the length of the grazing interval was inversely proportional to the amount of concentrate offered; these results suggest that physiological rather than physical stimuli were responsible for grazing cessation. The decrease in time spent grazing with increasing concentrate DMI is consistent with changes in neuroendocrine factors secreted in response to the presence of food in the digestive tract or with circulating products of digestion. After afternoon supplementation, sunset signaled the end of grazing irrespective of stage of lactation, timing of sunset, or supplementation status, suggesting that photoperiod influenced grazing behavior. Results confirmed changes in grazing behavior, an associated reduction in pasture DMI, and an increase in milk production when cows consume increasing amounts of concentrates. However, as the effect of supplement on grazing behavior differed between morning and afternoon supplementation, further research is required to better understand the factors controlling grazing behavior, to allow improved milk production responses to supplementary feeding.  相似文献   

13.
With the introduction of a protein milk payment system in New Zealand in 1988, there was an influx of North American (NA) Holstein-Friesian (HF) genetics into New Zealand (NZ) dairy herds, leading to an increase in the average percentage of NA genetics in NZ HF cows—from 2% in 1980 to 38% in 1999. Of interest has been the effect this change has had on farm profitability and on the management required for these animals, as well as the phenotypic changes that have occurred within the national herd under the breeding programs operated in NZ from 1970 to 1990. The objective of this study was to quantify differences in body dimensions, body weights, and puberty-related parameters among 3 strains of HF, representing animals of NZ origin representative of the genetics present in 1970 and 1990 and of NA origin with 1990s genetics. A total of 172 animals born in 1999 were compared. The strains were 1) NZ70, a strain of NZ Friesian (average 7% NA genetics) equivalent to high-genetic-merit (high Breeding Worth) cows farmed in the 1970s; 2) NZ90, a strain of HF of NZ origin (average 24% NA genetics) typical of the animals present in the 1990s; and 3) NA90, a strain of HF of NA origin (average of 91% NA genetics) typical of animals present in the 1990s. The differences in BW among all strains were significant at 6 and 12 mo of age. At 15 and 24 mo, the 2 NZ strains were significantly lighter than the NA90 animals. At 24 mo of age (i.e., prior to first calving), the NA90 strain animals (BW = 515 kg) were 22 and 34 kg heavier than the NZ90 and NZ70 strains. The body length of the NA90 strain was greater than either of the 2 NZ strains; the differences among the NA90 strain and the 2 NZ strains varied from 2 to 6 cm, with the differences generally being greater at older ages. The trend in heart girth difference among strains was similar to that observed for body length. The wither height of the NA90 animals was greater than that of the NZ strains by 1 to 7 cm, although there was no significant difference between the NA90 and NZ90 strains at birth. At puberty the NA90 heifers were 20 d older and 20 kg heavier than the NZ90 heifers, which in turn were 25 kg and 25 d older than the NZ70 heifers. The NA90 strain had a heavier mature body weight, and their older age at puberty suggested either that they mature later or that, under pastoral conditions, their growth rate is limited by their inability to consume sufficient metabolizable energy as grazed pasture, with a consequent delay in puberty. Results from this study will be useful in revising target BW in growing heifers of different germplasm.  相似文献   

14.
The effects of a dietary supplement of rumen-protected choline on feed intake, milk yield, milk composition, blood metabolites, and hepatic triacylglycerol were evaluated in periparturient dairy cows. Thirty-eight multiparous cows were blocked into 19 pairs and then randomly allocated to either one of 2 treatments. The treatments were supplementation either with or without (control) rumen-protected choline. Treatments were applied from 3 wk before until 6 wk after calving. Both groups received the same basal diet, being a mixed feed of grass silage, corn silage, straw, and soybean meal, and a concentrate mixture delivered through transponder-controlled feed dispensers. For all cows, the concentrate mixture was gradually increased from 0 kg/day (wk −3) to 0.9 kg of dry matter (DM)/d (day of calving) and up to 8.1 kg of DM/d on d 17 postcalving until the end of the experiment. Additionally, a mixture of 60 g of a rumen-protected choline supplement (providing 14.4 g of choline) and of 540 g of soybean meal or a (isoenergetic) mixture of 18 g of palm oil and 582 g of soybean meal (control) was offered individually in feed dispensers. Individual feed intake, milk yield, and body weight were recorded daily. Milk samples were analyzed weekly for fat, protein, and lactose content. Blood was sampled at wk −3, d 1, d 4, d 7, d 10, wk 2, wk 3, and wk 6 and analyzed for glucose, nonesterified fatty acids, and β-hydroxybutyric acid. Liver biopsies were taken from 8 randomly selected pairs of cows at wk −3, wk 1, wk 4, and wk 6 and analyzed for triacylglycerol concentration. We found that choline supplementation increased DM intake from 14.4 to 16.0 kg/d and, hence, net energy intake from 98.2 to 109.1 MJ/d at the intercept of the lactation curve at 1 day in milk (DIM), but the effect of choline on milk protein yield gradually decreased during the course of the study. Choline supplementation had no effect on milk yield, milk fat yield, or lactose yield. Milk protein yield was increased from 1.13 to 1.26 kg/d at the intercept of the lactation curve at 1 DIM, but the effect of choline on milk protein yield gradually decreased during the course of the study. Choline supplementation was associated with decreased milk fat concentration at the intercept of the lactation curve at 1 DIM, but the effect of choline on milk fat concentration gradually decreased as lactation progressed. Choline supplementation had no effect on energy-corrected milk yield, energy balance, body weight, body condition score, and measured blood parameters. Choline supplementation decreased the concentration of liver triacylglycerol during the first 4 wk after parturition. Results from this study suggest that hepatic fat export in periparturient dairy cows is improved by choline supplementation during the transition period and this may potentially decrease the risk for metabolic disorders in the periparturient dairy cow.  相似文献   

15.
The objective of this study was to determine the effect of daily herbage allowance (DHA) and concentrate level on milk production and dry matter intake of spring-calving dairy cows in early lactation. Seventy-two Holstein-Friesian dairy cows (mean calving date February 2) were randomly assigned across 6 treatments (n = 12) in a 2 × 3 factorial arrangement. The 6 treatments consisted of 2 DHA ( > 4 cm) and 3 concentrate levels: 13 kg of herbage dry matter/cow per d (low) or 17 kg of herbage dry matter/cow per d (high) DHA and unsupplemented, 3 kg, or 6 kg of dry matter concentrate/cow per d. The experimental period (period I) lasted 77 d and was followed by a carryover period (period II) during which animals were randomly reassigned across 2 grazing treatments offering 17 or 21 kg of herbage dry matter/cow per d. Increasing DHA significantly increased milk (+1.85 kg), solids-corrected milk, protein (+79.5 g), and lactose yields, protein concentration, and mean body weight (BW). Mean body condition score (BCS) and end-point BCS were also significantly higher with the high-DHA treatments. There was a linear response in milk yield, milk lactose concentration, and solids-corrected milk to concentrate supplementation. There was a significant difference in mean BW as concentrate increased from 0 to 3 kg (506 and 524 kg, respectively); there was no further increase in BW when 6 kg of concentrate was offered. Cows offered the low DHA had significantly lower grass dry matter intake (13.3 kg) and total dry matter intake (16.3 kg) than the high-DHA cows during period I. Concentrate supplementation significantly increased total dry matter intake. During period II, previous DHA continued to have a significant carryover effect on milk protein concentration, BW change, mean BCS, and end-point BCS. Concentrate supplementation during period I continued to have a significant carryover effect in period II on milk yield; milk fat, protein, and lactose yields; solids-corrected milk yield; BW; and mean BCS. Results from this study indicate that offering a medium level of DHA (17 kg of herbage dry matter) in early lactation will increase milk production. Offering concentrate will result in a linear increase in milk production. In an early spring feed-budgeting scenario, when grass supply is in deficit, offering 3 kg of dry matter concentrate with 17 kg of DHA has the additive effect of maintaining the grazing rotation at the target length as well as ensuring the herd is adequately fed.  相似文献   

16.
Seventy multiparous Holstein-Friesian cows were fed different amounts of pasture and concentrates, or a total mixed ration (TMR), for 42 d in mid-lactation to test the hypothesis that the concentration of Se in milk would depend on the amount of Se consumed, when the Se is primarily organic in nature, regardless of the diet of the cows. Of the 70 cows, 60 grazed irrigated perennial pasture at daily allowances of either 20 or 40 kg of dry matter (DM)/cow. These cows received 1 of 3 amounts of concentrates, either 1, 3, or 6 kg of DM/cow per day of pellets, and at each level of concentrate feeding, the pellets were formulated to provide 1 of 2 quantities of Se from Se yeast, either about 16 or 32 mg of Se/d. The other 10 cows were included in 2 additional treatments where a TMR diet was supplemented with 1 kg of DM/d of pellets formulated to include 1 of the 2 quantities of supplemental Se. Total Se intakes ranged from 14.5 to 35.9 mg/d, and of this, the Se-enriched pellets provided 93, 91, and 72% of the Se for cows allocated 20 and 40 kg of pasture DM/d or the TMR, respectively. No effects of the amount of Se consumed on any milk production variable, or on somatic cell count, body weight, and body condition score, for either the pasture-fed or TMR-fed cows were found. Milk Se concentrations responded quickly to the commencement of Se supplementation, reaching 89% of steady state levels at d 5. When milk Se concentrations were at steady state (d 12 to 40), each 1 mg of Se eaten increased the Se concentration of milk by 5.0 μg/kg (R2 = 0.97), and this response did not seem to be affected by the diet of the cows or their milk production. The concentration of Se in whole blood was more variable than that in milk, and took much longer to respond to change in Se status, but it was not affected by diet at any time either. For the on-farm production of Se-enriched milk, it is important to be able to predict milk Se concentration from Se input. In our study, type of diet did not affect this relationship.  相似文献   

17.
The objective of the present study was to determine effects of strain of Holstein-Friesian and feed system on body weight (BW) and body condition score (BCS; scale of 1 to 5) lactation profiles in seasonal-calving, grass-based milk production systems. The 3 strains of Holstein-Friesian compared differed in milk production potential and were high-production North American (HP), high-durability North American (HD), and New Zealand (NZ). The 3 feed systems compared were a high grass allowance feed system typical of spring-calving herds in Ireland (MP); an increased stocking rate system (HS); and an increased concentrate supplementation system (HC), each maintained within a separate farmlet. The data comprised 20,611 weekly BW and 7,920 BCS records assessed every 3 wk across 5 yr on 584 lactations. An exponential function was used to model BW and BCS lactation profiles across feed systems. Across feed systems, the NZ strain was significantly lighter (545 kg) but had greater average BCS (3.10 units) compared with the HP (579.3 kg and 2.76 units, respectively) and HD strains (583.2 kg and 2.87 units, respectively). Across feeding systems, the HD and HP strains exhibited a greater loss of BCS in early lactation (0.27 and 0.29 units, respectively) compared with the NZ strain (0.21 units). The HP strain failed to gain BCS over the entire lactation. Concentrate input did not affect the rate of BCS or BW loss in early lactation or BCS at 60 DIM. This study extends previous research outlining the greater suitability of the NZ strain to the low-cost grass-based system of milk production predominantly operated in Ireland.  相似文献   

18.
A 5 yr whole-system study, beginning in June 1994, compared the productivity of high [HGM; Australian Breeding Value (ABV) of 49.1 kg of fat plus protein] and low [LGM; ABV of 2.3 kg of fat plus protein] genetic merit cows. Cows from both groups were fed at 3 levels of concentrate (C): 0.34 (low C), 0.84 (medium C), and 1.71 (high C) t of DM/cow per lactation. Thus, there were 6 treatments (farmlets) composed of 18 cows each. The 30 blocks of pasture on each farmlet were matched between farmlets for pasture growth before the study (and soil characteristics and aspect). Cows were culled, and pasture and feed use were managed so as not to bias any one treatment. Genetic merit, level of feeding, and their interaction were significant effects for protein content, protein/cow, and milk and protein/ha. For fat and milk yield/cow, genetic merit and level of feeding were significant, whereas there was no significant effect of genetic merit on fat content. The difference of 46.8 kg of fat plus protein yield between the ABV of HGM and LGM cows and the actual difference in production between the 2 groups was not significantly different except for low C (27 kg) cows. This was due to a 3-fold lower protein yield difference (6 kg/cow) compared with an ABV difference for protein yield of 17.9 kg/cow. The dramatic effect of treatment on protein is in line with differences in the mean protein content (2.89% for the HGM - low C cows compared with a mean of 3.02% for the remaining groups) and mean body condition score [4.3 for HGM - low C cows compared with 4.8 for the mean of the remaining groups (scale 1 to 8)], both indicators reflecting a higher negative energy balance in the HGM - low C cows. When individual cow production was plotted against ABV for production of milk or protein yield all relationships were quadratic, but the slope was relatively flat (low response to ABV) for the low C cows, steeper for the medium C cows and steepest (but not linear) for the high C cows. The relationship between ABV for fat yield and actual fat yield was linear for all levels of concentrate. The mean milk yield/ha from pasture for the 6 farmlets over the 5 yr was 11,868 L, 11,417 L, or 7,761 L for the HGM cows fed at low C, medium C, or high C, respectively, and 10,579 L, 9,800 L, or 5,812 L for LGM cows, fed at low C, medium C, or high C, respectively. The response to concentrates fed was very high for the HGM - medium C cows at 0.115 kg fat plus protein or 1.75 L milk/kg of concentrate fed, with comparable figures of 0.083 kg and 1.0 L, 0.86 kg and 1.47 L and 0.066 and 0.92 L/kg of concentrate fed for the HGM - high C, LGM - medium C, and LGM - high C, respectively. The results show a significant genetic merit by environment (level of feeding) interaction for reproduction and most production parameters when considered in terms of the individual cow and the whole farm system.  相似文献   

19.
This 2 × 2 factorial design experiment was conducted to compare the performance of spring-calving Holstein dairy cows (HOL, n = 34) with Swedish Red × Jersey/Holstein crossbred (SR × J/HOL, n = 34) dairy cows within low and medium concentrate input grassland-based dairy systems. The experiment commenced when cows calved and encompassed 1 full lactation. Cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio, and 40:60 DM ratio, for low and medium, respectively] until turnout, grazed grass plus either 1.0 or 4.0 kg of concentrate/d during the grazing period (low and medium, respectively), and grass silage and concentrates (85:15 DM ratio, and 70:30 DM ratio, for low and medium, respectively) from rehousing and until drying off. No significant genotype × system interactions were present for any of the feed intake or full-lactation milk production data examined. Full-lactation concentrate DM intakes were 769 and 1,902 kg/cow for the low and medium systems, respectively, whereas HOL cows had a higher total DM intake than SR × J/HOL cows in early lactation, but not in late lactation. Although HOL cows had a higher lactation milk yield than SR × J/HOL cows, the latter produced milk with a higher fat and protein content, and thus fat plus protein yield was unaffected by genotype. Milk produced by the SR × J/HOL cows had a higher degree of saturation of fatty acids than milk produced by the HOL cows, and the somatic cell score of milk produced by the former was also higher. Throughout the lactation, HOL cows were on average 30 kg heavier than SR × J/HOL cows, whereas the SR × J/HOL cows had a higher body condition score than the HOL cows. Holstein cows had a higher incidence of mastitis and ovarian dysfunction that SR × J/HOL cows.  相似文献   

20.
Shortening or omitting the dry period (DP) improves energy balance (EB) in early lactation because of a reduction in milk yield. Lower milk yield results in lower energy demands and requires less energy intake. The aim of this study was to evaluate the effects of DP length and concentrate level postpartum on milk yield, feed intake, EB, and plasma metabolites between wk ?4 and 7 relative to calving of cows of second parity or higher. Holstein-Friesian dairy cows (n = 123) were assigned randomly to 1 of 2 DP lengths: 0-d DP (n = 81) or 30-d DP (n = 42). Prepartum, cows with a 0-d DP received a lactation ration based on grass silage and corn silage (6.4 MJ of net energy for lactation/kg of dry matter). Cows with a 30-d DP received a dry cow ration based on grass silage, corn silage, and straw (5.4 MJ of net energy for lactation/kg of dry matter). Postpartum, all cows received the same basal lactation ration as provided to lactating cows prepartum. Cows with a 0-d DP were fed a low level of concentrate up to 6.7 kg/d based on the requirement for their expected milk yield (0-d DP-L; n = 40) or the standard level of concentrate up to 8.5 kg/d (0-d DP-S; n = 41), which was equal to the concentrate level for cows with a 30-d DP (30-d DP-S; n = 42) based on requirements for their expected milk yield. Prepartum dry matter intake, concentrate intake, basal ration intake, energy intake, plasma β-hydroxybutyrate (BHB), and insulin concentrations were greater and plasma free fatty acids (FFA) and glucose concentrations were lower, but EB was not different in cows with a 0-d DP compared with cows with a 30-d DP. During wk 1 to 3 postpartum, milk fat yield and plasma BHB concentration were lower and dry matter intake and concentrate intake were greater in cows with a 0-d DP compared with cows with a 30-d DP. During wk 4 to 7 postpartum, fat- and protein-corrected milk (FPCM), lactose content, and lactose and fat yield were lower in 0-d DP-L or 0-d DP-S cows compared with 30-d DP-S cows. Basal ration intake, EB, body weight, plasma glucose, and insulin and insulin-like growth factor-1 concentrations were greater and plasma FFA and BHB concentrations were lower in 0-d DP-L and 0-d DP-S cows compared with 30-d DP-S cows. Concentrate and energy intake were lower in 0-d DP-L cows than in 0-d DP-S or 30-d DP-S cows. Milk yield and concentrations of plasma metabolites did not differ in wk 4 to 7, although EB was lower in wk 6 and 7 postpartum in 0-d DP-L cows than in 0-d DP-S cows. In conclusion, a 0-d DP reduced milk yield and improved EB and metabolic status of cows in early lactation compared with a 30-d DP. Reducing the postpartum level of concentrate of cows with a 0-d DP did not affect fat- and protein-corrected milk yield or plasma FFA and BHB concentrations in early lactation but did reduce EB in wk 6 and 7 postpartum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号