首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Importance of casein micelle size and milk composition for milk gelation   总被引:1,自引:0,他引:1  
The economic output of the dairy industry is to a great extent dependent on the processing of milk into other milk-based products such as cheese. The yield and quality of cheese are dependent on both the composition and technological properties of milk. The objective of this study was to evaluate the importance and effects of casein (CN) micelle size and milk composition on milk gelation characteristics in order to evaluate the possibilities for enhancing gelation properties through breeding. Milk was collected on 4 sampling occasions at the farm level in winter and summer from dairy cows with high genetic merit, classified as elite dairy cows, of the Swedish Red and Swedish Holstein breeds. Comparisons were made with milk from a Swedish Red herd, a Swedish Holstein herd, and a Swedish dairy processor. Properties of CN micelles, such as their native and rennet-induced CN micelle size and their ζ-potential, were analyzed by photon correlation spectroscopy, and rennet-induced gelation characteristics, including gel strength, gelation time, and frequency sweeps, were determined. Milk parameters of the protein, lipid, and carbohydrate profiles as well as minerals were used to obtain correlations with native CN micelle size and gelation characteristics. Milk pH and protein, CN, and lactose contents were found to affect milk gelation. Smaller native CN micelles were shown to form stronger gels when poorly coagulating milk was excluded from the correlation analysis. In addition, milk pH correlated positively, whereas Mg and K correlated negatively with native CN micellar size. The milk from the elite dairy cows was shown to have good gelation characteristics. Furthermore, genetic progress in relation to CN micelle size was found for these cows as a correlated response to selection for the Swedish breeding objective if optimizing for milk gelation characteristics. The results indicate that selection for smaller native CN micelles and lower milk pH through breeding would enhance gelation properties and may thus improve the initial step in the processing of cheese.  相似文献   

2.
《Journal of dairy science》2023,106(8):5562-5569
The aim of this study was to estimate genetic parameters for milk urea (MU) content in 3 main Danish dairy breeds. As a part of the Danish milk recording system, milk samples from cows on commercial farms were analyzed for MU concentration (mmol/L) and the percentages of fat and protein. There were 323,800 Danish Holstein, 70,634 Danish Jersey, and 27,870 Danish Red cows sampled with a total of 1,436,580, 368,251, and 133,922 test-day records per breed, respectively, included in the data set. Heritabilities for MU were low to moderate (0.22, 0.18, and 0.24 for the Holstein, Jersey, and Red breeds, respectively). The genetic correlation was close to zero between MU and milk yield in Jersey and Red, and −0.14 for Holstein. The genetic correlations between MU and fat and protein percentages, respectively, were positive for all 3 dairy breeds. Herd-test-day explained 51%, 54%, and 49% of the variation in MU in Holstein, Jersey, and Red, respectively. This indicates that MU levels in milk can be reduced by farm management. The current study shows that there are possibilities to influence MU by genetic selection as well as by farm management.  相似文献   

3.
Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol synthesis in the mammary gland, and the corresponding gene has emerged as a strong candidate for the variation in milk fat percentage. In this study, the allele frequencies and effects of the DGAT1 K232A variants in the Swedish dairy breeds Swedish Red and Swedish Holstein were investigated. A total of 239 cows, 143 of the Swedish Red breed and 96 of the Swedish Holstein breed, in the experimental herd at the Swedish University of Agricultural Sciences were genotyped for the DGAT1 polymorphism. The Swedish Red cows in the herd belonged to 1 of 2 selection lines with high or low milk fat percentage, respectively, but with similar high total milk energy production. The frequency of the K variant was found to be significantly greater in the high-fat line than in the low-fat line. The average frequency of the K variant in the 2 lines of the Swedish Red cows was 0.09 compared with 0.12 among the Swedish Holstein cows. Mixed model analysis was used to estimate the effect of the DGAT1 K232A polymorphism based on 16,866 test-day records for milk production traits. In accordance with previous studies, the most pronounced effects were found for fat and protein percentages and milk yield; and the K variant was associated with an increase in milk fat and protein percentages but less milk yield compared with the A variant. Less pronounced effects were found for yields of fat and protein for which the K variant was associated with greater fat yield but less protein yield.  相似文献   

4.
Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G′), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40 min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h2) for G′ and YS in rennet and acid gels were found to be high (h2 = 0.38–0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G′acid and YSacid, both of which were strong. The high heritability (h2 = 0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and lead to deterioration of acid-induced coagulation through unfavorable genetic associations with protein content (0.38) and milk yield (−0.61 to −0.71), respectively. The outcome of this study suggests that by including more detailed compositional traits genetically associated with milk coagulation or by including milk coagulation properties directly within the breeding goal, it appears possible to breed cows that produce milk better suited for production of cheese and fermented products.  相似文献   

5.
《Journal of dairy science》2023,106(4):2510-2518
Extending the voluntary waiting period (VWP) for primiparous cows can have a positive impact on fertility without a negative impact on milk production per day in the calving interval (CInt). We investigated the effect of extended VWP during first lactation on milk yield (MY) during 2 consecutive lactations in primiparous cows. The study involved 16 commercial herds in southern Sweden. A total of 533 Holstein and Red dairy cattle (Swedish Red, Danish Red, Ayrshire) dairy cows were randomly assigned to a conventional 25 to 95 d VWP (n = 252) or extended 145 to 215 d VWP (n = 281). Data on calvings, inseminations, and test-day yields were retrieved from the Swedish Milk Recording System. Cows with VWP according to plan and completing 1 or 2 CInt with a second or third calving were included in the data analysis. Whole lactation and 305-d energy-corrected milk (ECM) yield were higher for the extended VWP group than the conventional VWP group in both the first lactation (12,307 vs. 9,587 and 9,653 vs. 9,127 kg ECM) and second lactation (12,817 vs. 11,986 and 11,957 vs. 11,304 kg ECM). We found no difference between the VWP groups in MY per day during the first CInt or during the first and second CInt combined, although MY per day during the second CInt was around 1.5 kg higher for cows with extended VWP than for cows with conventional VWP. Thus extended VWP for primiparous cows can be used as a management tool without compromising MY.  相似文献   

6.
Milk leakage in dairy cows is a symptom of impaired teat sphincter function. Milk leakage is related to an increased risk of mastitis in heifers and cows, and causes hygiene problems. The aim of our study was to assess whether teat shape, condition of teat orifice, and peak milk flow rate are risk factors for milk leakage. We conducted a longitudinal observational study in 15 German dairy farms in which cows were maintained in loose housing. The farms were visited monthly at 2 consecutive milkings. During the evening milking, milk flow curves were measured with the LactoCorder. Milk leakage was recorded during the subsequent morning milking, when cows entered the milking parlor. Immediately after detachment of the milking cluster, teat shape, teat end shape, and condition of the teat orifice of cows were assessed between 9 and 100 d in milk (DIM) and during late lactation (>250 DIM). Data from 1600 cows were analyzed. Milk leakage was treated as the binary response variable in a logistic regression model with herd as a random effect. Primiparous cows with high peak milk flow and teat canal protrusion were at greater risk of milk leakage. High peak milk flow rate, short teats, teat canal protrusion, inverted teat ends, and early lactation increased the risk of milk leakage in multiparous cows. Random herd effects accounted for only 10% of the total variation, indicating that the impact of management or other herd-level factors on the occurrence of milk leakage is virtually negligible for practical purposes.  相似文献   

7.
This study analyzed component data from herds participating in the Mideast Federal Milk Marketing Order from 2000 through 2002, and its implications for herd profitability. A monthly simulation model was developed to evaluate the economic returns for a representative Holstein and Jersey herd in Pennsylvania under multiple component pricing. Component levels were highly seasonal and variable from farm to farm. A third of the herds during the course of a year realized a 1- to 3-mo temporary reduction in milk fat or protein greater than one standard deviation. Consistently producing milk fat and protein one standard deviation below the mean reduced the Class III value by $0.82/cwt (100 pounds), or 7.09%. The simulation model indicated that a herd of 100 Holstein cows generated $31,221 more income over feed costs (IOFC) a year than a herd of 100 Jersey cows. Although Jersey milk had greater gross value than Holstein milk due to higher component levels, total volume of milk and components produced by Holsteins offset this difference. Simulation results confirm that increasing milk fat and protein percentages by one standard deviation increased IOFC 7.7% for Holsteins and 9.2% for Jerseys relative to the baseline IOFC, with similar losses for component reductions. Increasing milk yield by one standard deviation increased IOFC by 19.6% for Holsteins and 23.9% for Jerseys relative to the baseline IOFC, again with similar losses for reductions in milk production. In all of the scenarios analyzed, the most important factor affecting IOFC was total amount of milk fat and protein produced, not the component percentage levels.  相似文献   

8.
The incidence of normal and atypical progesterone profiles in Swedish dairy cows was studied. Data were collected from an experimental herd over 15 yr, and included 1,049 postpartum periods from 183 Swedish Holstein and 326 Swedish Red and White dairy cows. Milk progesterone samples were taken twice weekly until initiation of cyclical ovarian activity and less frequently thereafter. Progesterone profiles were 1) normal profile: first rise in milk progesterone above the threshold value before d 56 postpartum, followed by regular cyclical ovarian activity (70.4%); 2) delayed onset of cyclical ovarian activity: low milk progesterone the first 56 d postpartum (15.6%); 3) cessation of cyclical ovarian activity: ovarian activity resumed within 56 d postpartum, but ceased for a period of 14 d or more (6.6%); and 4) prolonged luteal phase: ovarian activity resumed within 56 d postpartum, but milk progesterone remained elevated in the nonpregnant cow for a period of 20 d or more (7.3%). Swedish Holsteins had 1.5 times higher risk of atypical profile than Swedish Red and Whites. Risk of atypical profiles was 0.5 and 0.7 times lower for older cows compared with first-parity cows; 2.3 times higher for cows in tie-stalls compared with those in loose housing; 2.6 times higher for cows calving during winter compared with summer; 0.5 times lower for cows in earlier (1994-1999) calving-year groups compared with the most recent (2000-2002); 2.5 times higher for cows with planned extended calving interval compared with conventional calving interval; and 2.2 times higher for an atypical profile in previous lactation compared with a normal profile. Cows with atypical profiles had a 15-d increase in interval from calving to first artificial insemination and an 18-d increase in interval from calving to conception. Progesterone samples taken within the first 60 d postpartum were used to calculate the percentage of samples above the threshold value of luteal activity. This measure had a significantly different mean in profiles and can be used to separate delayed onset of cyclical ovarian activity profiles and prolonged luteal phase profiles from normal. Thereby, it may be a more effective tool than measurements based only on the onset of ovarian cyclical activity in genetic evaluation of early postpartum fertility in dairy cows.  相似文献   

9.
Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management strategies to capitalize on them. Research should be conducted to understand the component of the relationship not captured by ABV fertility.  相似文献   

10.
Dietary protein levels are a risk factor for poor reproductive performance. Conception is particularly impaired in cases of high blood or milk urea. The objective of this study was to investigate the association between conception and low milk urea or changes in milk urea around artificial insemination (AI). Data were obtained from the French Milk Control Program for a 4-yr period (2009–2012). Milk urea values between 250 and 450 mg/kg (4.3 and 7.7 mM) were considered intermediate (I), and values ≤150 mg/kg (2.6 mM) were considered low (L). Milk urea values before and after each AI were allocated into 4 classes representing the dynamics of milk urea (before-after; I-I, I-L, L-I, and L-L). Subclinical ketosis was defined using milk fat and protein contents before AI as proxies. A logistic regression with a Poisson correction and herd as a random variable was then performed on data from Holstein or all breeds of cows. The success of conception was decreased [relative risk (95% confidence interval) = 0.96 (0.94–0.99)] in low-urea cows compared with intermediate-urea cows after AI; no significant association was found for urea levels before AI. When combining data on urea before and after AI, I-L urea cows exhibited a 5 to 9% decrease in conception compared with I-I urea cows, and L-I urea cows showed no difference in conception success compared with I-I urea cows. A decreased conception success for L-L urea cows compared with I-I urea cows was observed for the analysis with cows of all breeds. This work revealed that a decrease in urea from intermediate (before AI) to low (after AI) is a risk factor for conception failure. Surveys of variation in milk urea in dairy cows close to breeding are highly recommended.  相似文献   

11.
Incontinentia lactis is a possible predisposing factor for an elevated level of intramammary infection. The goal of the present study was to investigate possible causes of incontinentia lactis in dairy cows. Two farms that differed in breed composition, but that had similar average milk yields were studied: herd A, 28 kg/d, 31 Red Holstein cows; and herd B, 26 kg/d, 16 Brown Swiss cows. Herd A was classified into 2 groups: incontinentia lactis (ILA group) and control, whereas herd B was exclusively a control herd. Milk samples that represented foremilk and the main milk fraction were collected during 4 milking sessions. In addition, milk leakage samples from the ILA group were collected at different time intervals from 0 to 5 h before milking. Measurements of the teat, milk flow, fractions of cisternal and alveolar milk, intramammary pressure, and blood oxytocin pattern also were obtained. The ILA cows did not have differences in fat content between milk leakage and cisternal milk fraction. Milk fat content, however, increased during milking in response to continuous milk ejection (1.95, 1.99, and 4.61% for milk leakage, cisternal, and main milk samples, respectively). Teat canals were 9% shorter in the ILA cows, which showed greater milk yield, peak, and average flow rates. Quarter cisternal milk yield of ILA cows tended to be greater (0.50 vs. 0.23 and 0.28 kg for ILA and controls from herds A and B, respectively), whereas percentages of cistern milk and alveolar milk did not differ from controls. The greater pressure in the ILA group, both before and after manual udder stimulation (ILA: 4.0 and 6.4 kPa; control: 2.0 and 5.0 kPa, respectively), could be an important cause for the leakage. Nevertheless, the increase in IMP that occurred after udder preparation affirms that milk ejection occurred in response to the tactile teat stimulation, but not before the onset of leakage. Blood oxytocin concentration in ILA cows was low until the start of udder preparation and increased in response to the milking stimulus (reaffirming the hypothesis that milk leakage occurred in the absence of milk ejection). In conclusion, milk losses by leakage are likely due to the large amount of cisternal milk, which creates pressure and causes leakage, in the absence of milk ejection.  相似文献   

12.
The development of breeding tools, such as genomic selection and sexed semen, has progressed rapidly in dairy cattle breeding during the past decades. In combination with beef semen, these tools are adopted increasingly at herd level. Dairy crossbreeding is emerging, but the economic and genetic consequences of combining it with the other breeding tools are relatively unknown. We investigated 5 different sexed semen schemes where 0, 50, and 90% of the heifers; 50% of the heifers + 25% of the first-parity cows; and 90% of the heifers + 45% of the first-parity cows were bred to sexed semen. The 5 schemes were combined in scenarios managing pure-breeding or terminal crossbreeding, including genomic testing of all newborn heifers or no testing, and keeping Swedish Red or Swedish Holstein as an initial breed. Thus, 40 scenarios were simulated, combining 2 stochastic simulation models: SimHerd Crossbred (operational returns) and ADAM (genetic returns). The sum of operational and genetic returns equaled the total economic return. Beef semen was used in all scenarios to limit the surplus of replacement heifers. Terminal crossbreeding implied having a nucleus of purebred females, where some were inseminated with semen of the opposite breed. The F1 crossbred females were inseminated with beef semen. The reproductive performance played a role in improving the benefit of any of the tools. The most considerable total economic returns were achieved when all 4 breeding tools were combined. For Swedish Holstein, the highest total economic return compared with a pure-breeding scenario, without sexed semen and genomic test, was achieved when 90% sexed semen was used in heifers and 45% sexed semen was used for first-parity cows combined with genomic test and crossbreeding (+€58, 33% crossbreds in the herd). The highest total economic return for Swedish Red compared with a pure-breeding scenario, without sexed semen and genomic test, was achieved when 90% sexed semen was used in heifers combined with genomic test and crossbreeding (+€94, 46% crossbreds in the herd). Terminal crossbreeding resulted in lower genetic returns across the herd compared with the corresponding pure-breeding scenarios but was compensated by a higher operational return.  相似文献   

13.
This 2 × 2 factorial design experiment was conducted to compare the performance of spring-calving Holstein dairy cows (HOL, n = 34) with Swedish Red × Jersey/Holstein crossbred (SR × J/HOL, n = 34) dairy cows within low and medium concentrate input grassland-based dairy systems. The experiment commenced when cows calved and encompassed 1 full lactation. Cows were offered diets containing grass silage and concentrates [70:30 dry matter (DM) ratio, and 40:60 DM ratio, for low and medium, respectively] until turnout, grazed grass plus either 1.0 or 4.0 kg of concentrate/d during the grazing period (low and medium, respectively), and grass silage and concentrates (85:15 DM ratio, and 70:30 DM ratio, for low and medium, respectively) from rehousing and until drying off. No significant genotype × system interactions were present for any of the feed intake or full-lactation milk production data examined. Full-lactation concentrate DM intakes were 769 and 1,902 kg/cow for the low and medium systems, respectively, whereas HOL cows had a higher total DM intake than SR × J/HOL cows in early lactation, but not in late lactation. Although HOL cows had a higher lactation milk yield than SR × J/HOL cows, the latter produced milk with a higher fat and protein content, and thus fat plus protein yield was unaffected by genotype. Milk produced by the SR × J/HOL cows had a higher degree of saturation of fatty acids than milk produced by the HOL cows, and the somatic cell score of milk produced by the former was also higher. Throughout the lactation, HOL cows were on average 30 kg heavier than SR × J/HOL cows, whereas the SR × J/HOL cows had a higher body condition score than the HOL cows. Holstein cows had a higher incidence of mastitis and ovarian dysfunction that SR × J/HOL cows.  相似文献   

14.
Milk yield has a strong effect on fertility, but it may vary across different herds and individual cows. Therefore, the aim of this study was to assess the effects of breed and its interaction with level of milk production at the herd level (Herd-L) and at a cow-within-herd level (Cow-L) on fertility traits in dairy cattle. Data were gathered from Holstein (n = 17,688), Brown Swiss (n = 32,697), Simmental (n = 27,791), and Alpine Grey (n = 13,689) cows in northeastern Italy. The analysis was based on records from the first 3 lactations in the years 2011 to 2014. A mixed model was fitted to establish milk production levels of the various herds (Herd-L) and individual cows (Cow-L) using milk as a response variable. The interval fertility traits were interval from calving to first service, interval from first service to conception, and number of days open. The success traits were nonreturn rate at 56 d after first service, pregnancy rate at first service, and the number of inseminations. The interval from calving to first service, interval from first service to conception, and number of days open were analyzed using a Cox's proportional hazards model. The nonreturn rate at 56 d after first service, pregnancy rate at first service, and the number of inseminations were analyzed using logistic regression. There was a strong interaction between breed and productivity class at both Herd-L and Cow-L on all traits. The effects of herd and cow productivity differed from each other and differed among breeds. The dual-purpose Simmental and Alpine Grey breeds had better fertility than the specialized Holstein and Brown Swiss dairy cows; this difference is only partly attributable to different milk yields. Greater herd productivity can result in higher fertility in cows, whereas higher milk yield of individual cows within a herd results in lower fertility. These effects at both Herd-L and Cow-L are curvilinear and are stronger in dual-purpose breeds, which was more evident from low to intermediate milk yield levels than from central to high productivity classes. Disentangling the effects of milk productivity on fertility at Herd-L and Cow-L and taking the nonlinearity of response into account could lead to better modeling of populations within breed. It could also help with management—for example, in precision dairy farming of dairy and dual-purpose cattle. Moreover, assessing the fertility of various breeds and their different responses to herd and individual productivity levels could be useful in devising more profitable crossbreeding programs in different dairy systems.  相似文献   

15.
《Journal of dairy science》2023,106(1):641-652
This study was conducted to assess the effects of a single transdermal administration of flunixin meglumine (FM) in early postpartum Holstein Friesian dairy cows on milk yield, culling risk, and reproductive performance. We hypothesized that FM treatment would reduce systemic inflammation, leading to higher milk yield, reduced culling risk, and better reproductive performance in the subsequent lactation. Holstein Friesian dairy cows [n = 500, 153 primiparous (PRIM), 347 multiparous (MULT)] from 3 farms in northeast Germany were enrolled in a prospective, randomized controlled clinical trial. Farms at risk for cows with excessive postpartum inflammation were identified in a preliminary trial by measuring serum haptoglobin concentrations in their fresh lactating cows. Only cows that had a eutocic birth and delivered a singleton calf alive, with no signs of milk fever or retained fetal membranes and rectal temperature ≤40°C at first clinical examination, were included within 24 to 36 h postpartum. Treatment included a single transdermal administration of either FM (3.33 mg/kg) or a placebo as control (CON). Milk production, milk solids, urea, and somatic cell count were recorded monthly for 8 mo after calving. Culling risk, first-service conception risk, and days open were retrieved from the farms' herd management software. Separate models for PRIM and MULT cows were built for most parameters because of significant effects of parity and parity × treatment interaction. Energy-corrected milk yield from 8 monthly Dairy Herd Improvement-equivalent tests was slightly greater in PRIM cows treated with FM (29.51 and 30.73 ± 1.35 kg, CON vs. FM), whereas it was reduced in treated MULT cows (38.23 and 37.47 ± 1.17 kg, CON vs. FM) compared with CON. Milk fat and protein yields were greater in FM-treated PRIM cows and lower in treated MULT cows compared with CON. Milk urea and somatic cell count were not affected by treatment. No differences in culling risk, first-service conception risk, or days open were observed. We conclude that a single transdermal administration of FM in early postpartum dairy cows on farms at risk for excessive postpartum inflammation slightly increased milk, milk fat, and milk protein yields in PRIM cows and decreased these variables in MULT cows. Neither culling risk nor fertility was affected by treatment in this study.  相似文献   

16.
This study was part of a larger project that aimed to understand the causes for increasing variation in cheese ripening in a cheese-producing region in northern Sweden. The influence of different on-farm factors on raw milk composition and properties was investigated and is described in this paper, whereas the monthly variation in the milk quality traits during 1 yr is described in our companion paper. The dairy farming systems on a total of 42 dairy farms were characterized through a questionnaire and farm visits. Milk from farm tanks was sampled monthly over 1 yr and analyzed for quality attributes important for cheese making. On applying principal component analyses to evaluate the variation in on-farm factors, different types of farms were distinguished. Farms with loose housing and automatic milking system (AMS) or milking parlor had a higher number of lactating cows, and predominantly Swedish Holstein (SH) breed. Farms associated with tiestalls had a lower number of lactating cows and breeds other than SH. Applying principal component analyses to study the variation in composition and properties of tank milk samples from farms revealed a tendency for the formation of 2 clusters: milk from farms with AMS or a milking parlor, and milk from farms with tiestall milking. The interaction between the milking system, housing system, and breed probably contributed to this grouping. Other factors that were used in the characterization of the farming systems only showed a minor influence on raw milk quality. Despite the interaction, milk from tiestall farms with various cow breeds had higher concentrations (g/100 g of milk) of fat (4.74) and protein (3.63), and lower lactose concentrations (4.67) than milk from farms with predominantly SH cows and AMS (4.32, 3.47, and 4.74 g/100 g of milk, respectively) or a milking parlor (4.47, 3.54, and 4.79 g/100 g of milk, respectively). Higher somatic cell count (195 × 103/mL) and lower free fatty acid concentration (0.75 mmol/100 g of fat) were observed in milk from farms with AMS than in milk from tiestall systems (150 × 103/mL and 0.83 mmol/100 g of fat, respectively). Type of farm influenced milk gel strength, with milk from farms with predominantly SH cows showing the lowest gel strength (65.0 Pa), but not a longer rennet coagulation time. Effects of dairy farming system (e.g., dominant breed, milking system, housing, and herd size) on milk quality attributes indicate a need for further studies to evaluate the in-depth effects of farm-related factors on milk quality attributes.  相似文献   

17.
《Journal of dairy science》2021,104(12):12189-12206
The contribution of the calf enterprise to the profit of the dairy farm is generally considered small, with beef bull selection on dairy farms often not considered a high priority. However, this is likely to change in the future as the rapid rate of expansion of the dairy herd in some countries is set to plateau and improvements in dairy herd fertility combine to reduce the proportion of dairy breed calves required on dairy farms. This presents the opportunity to increase the proportion of beef breed calves born, increasing both the value of calf sales and the marketability of the calves. Beef embryos could become a new breeding tool for dairies as producers need to reassess their breeding policy as a consequence of welfare concerns and poor calf prices. Assisted reproductive technologies can contribute to accelerated genetic gain by allowing an increased number of offspring to be produced from genetically elite dams. There are the following 3 general classes of donor females of interest to an integrated dairy-beef system: (1) elite dairy dams, from which oocytes are recovered from live females using ovum pick-up and fertilized in vitro with semen from elite dairy bulls; (2) elite beef dams, where the oocytes are recovered from live females using ovum pick-up and fertilized with semen from elite beef bulls; and (3) commercial beef dams (≥50% beef genetics), where ovaries are collected from the abattoir postslaughter, and oocytes are fertilized with semen from elite beef bulls that are suitable for use on dairy cows (resulting embryo with ≥75% beef genetics). The expected benefits of these collective developments include accelerated genetic gain for milk and beef production in addition to transformation of the dairy herd calf crop to a combination of good genetic merit dairy female calves and premium-quality beef calves. The aim of this review is to describe how these technologies can be harnessed to intensively select for genetic improvement in both dairy breed and beef breed bulls suitable for use in the dairy herd.  相似文献   

18.
《Journal of dairy science》2021,104(9):9703-9714
Supplementation of Ca products to cows after calving is common in calving protocols. This study evaluated the effect of a Ca-energy drink voluntarily consumed on milk yield and composition, odds to reach a next lactation, and calving interval. This prospective randomized study included a blinded placebo and was conducted in 10 commercial dairy farms that included 504 Holstein dairy cows. Cows were blocked within farm by calving sequence and parity (primiparous or multiparous). Within each block of 2 animals, cows were randomly assigned to 1 of 2 treatments: a Ca-energy supplement drink (CAE, n = 255) providing 45 g of Ca and other components (dextrose, lactose, protein, fat, other minerals and vitamins), a placebo (i.e., 100 g of cellulose and 20 g of dextrose; CON, n = 249), both strictly offered to the animals for voluntary consumption. Treatments were offered mixed in 20 L of water within 3 h after calving. Milk data were analyzed using 2 approaches. The first, most classical, evaluated the effect of the treatments on observed milk data, whereas the second approach evaluated the effect on milk residuals (i.e., the difference between observed milk data and a prediction made by a herd test-day model). Eighty-one percent of the CAE cows fully consumed the treatment, whereas only 50% of CON cows did. No differences were detected for observed milk yield, nor for composition in multiparous cows. The only production effect observed on multiparous cows was a treatment by time interaction for milk fat yield, reflecting greater yield for CAE cows between 100 and 150 d in milk only. However, primiparous cows receiving CAE had increased milk (+0.8 kg/d) and component yields (i.e., +40 g/d of protein) compared with CON cows. These effects were more evident when milk and milk components residuals data were analyzed (i.e., +1.5 kg/d for milk yield and +57 g/d of protein). This was achieved with a herd test-day model that allowed milk and milk components data to be adjusted for environmental and genetic factors (i.e., farm effect, time effect, age at calving, parity, stage of lactation, breeding value). The treatment had no effect on the probability of reaching the next lactation (i.e., 72% of CAE cows had a next calving against 69% in CON). Primiparous cows receiving CAE had a longer calving interval compared with CON cows. At 400 d after the application of the treatment, 65% of CAE primiparous cows had a next calving, whereas 81% of CON primiparous cows had calved already. The supplementation of the tested oral Ca-energy solution at calving did not increase the probability to reach a next lactation for neither primiparous or multiparous, but positively influenced milk yield and milk component yields for primiparous.  相似文献   

19.
The objective of this study was to evaluate the effect of variations in milk protein composition on milk clotting properties and cheese yield. Milk was collected from 134 dairy cows of Swedish Red and White, Swedish Holstein, and Danish Holstein-Friesian breed at 3 sampling occasions. Concentrations of αS1-, β-, and κ-casein (CN), α-lactalbumin, and β-lactoglobulin (LG) A and B were determined by reversed phase liquid chromatography. Cows of Swedish breeds were genotyped for genetic variants of β- and κ-CN. Model cheeses were produced from individual skimmed milk samples and the milk clotting properties were evaluated. More than 30% of the samples were poorly coagulating or noncoagulating, resulting in weak or no coagulum, respectively. Poorly and noncoagulating samples were associated with a low concentration of κ-CN and a low proportion of κ-CN in relation to total CN analyzed. Furthermore, the κ-CN concentration was higher in milk from cows with the AB genotype than the AA genotype of κ-CN. The concentrations of αS1-, β-, and κ-CN and of β-LG B were found to be significant for the cheese yield, expressed as grams of cheese per one hundred grams of milk. The ratio of CN to total protein analyzed and the β-LG B concentration positively affected cheese yield, expressed as grams of dry cheese solids per one hundred grams of milk protein, whereas β-LG A had a negative effect. Cheese-making properties could be improved by selecting milk with high concentrations of αS1-, β-, and κ-CN, with high κ-CN in relation to total CN and milk that contains β-LG B.  相似文献   

20.
This study assessed the extent of reproductive losses and associated genetic parameters in dairy cattle, using in-line milk progesterone records for 14 Swedish herds collected by DeLaval's Herd Navigator. A total of 330,071 progesterone samples were linked to 10,219 inseminations (AI) from 5,238 lactations in 1,457 Swedish Red and 1,847 Swedish Holstein cows. Pregnancy loss traits were defined as early embryonic loss (1–24 d after AI), late embryonic loss (25–41 d after AI), fetal loss (42 d after AI until calving), and total pregnancy loss (from d 1 after AI until calving). The following classical fertility traits were also analyzed: interval from calving to first service, interval from calving to last service, interval between first and last service, calving interval, and number of inseminations per service period. Least squares means with standard error (LSM ± SE), heritabilities, and genetic correlations were estimated in a mixed linear model. Fixed effects included breed, parity (1, 2, ≥3), estrus cycle number when the AI took place, and a linear regression on 305-d milk yield. Herd by year and season of AI, cow, and permanent environmental effect were considered random effects. Extensive (approximately 45%) early embryonic loss was found, but with no difference between the breeds. Swedish Red was superior to Swedish Holstein in the remaining pregnancy loss traits with, respectively: late embryonic loss of 6.1 ± 1.2% compared with 13.3 ± 1.1%, fetal loss of 7.0 ± 1.2% compared with 12.3 ± 1.2%, and total pregnancy loss of 54.4 ± 1.4% compared with 60.6 ± 1.4%. Swedish Red also had shorter calving to first service and calving to last service than Swedish Holstein. Estimated heritability was 0.03, 0.06, and 0.02 for early embryonic, late embryonic, and total pregnancy loss, respectively. Milk yield was moderately genetically correlated with both early and late embryonic loss (0.52 and 0.39, respectively). The pregnancy loss traits were also correlated with several classical fertility traits (?0.46 to 0.92). In conclusion, Swedish Red cows had lower reproductive loss during late embryonic stage, fetal stage, and in total, and better fertility than Swedish Holstein cows. The heritability estimates for pregnancy loss traits were of the same order of magnitude as previously reported for classical fertility traits. These findings could be valuable in work to determine genetic variation in reproductive loss and its potential usefulness as an alternative fertility trait to be considered in genetic or genomic evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号