首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Milk coagulation properties (MCP) are an important aspect in assessing cheese-making ability. Several studies showed that favorable conditions of milk reactivity with rennet, curd formation rate, and curd strength, as well as curd syneresis, have a positive effect on the entire cheese-making process and subsequently on the ripening of cheese. Moreover, MCP were found to be heritable, but little scientific literature is available about their genetic aspects. The aims of this study were to estimate heritability of MCP and genetic correlations among MCP and milk production and quality traits. A total of 1,071 Italian Holstein cows (progeny of 54 sires) reared in 34 herds in Northern Italy were sampled from January to July 2004. Individual milk samples were collected during the morning milking and analyzed for coagulation time (RCT), curd firmness (a30), pH, titratable acidity, fat, protein, and casein contents, and somatic cell count. About 10% of individual milk samples did not coagulate in 31 min, so they were removed from the analyses. Estimates of heritability for RCT and a30 were 0.25 ± 0.04 and 0.15 ± 0.03, respectively. Estimates of genetic correlations between MCP traits and milk production traits were negligible except for a30 with protein and casein contents (0.44 ± 0.10 and 0.53 ± 0.09, respectively). Estimates of genetic correlations between MCP traits and somatic cell score were strong and favorable, as well as those between MCP and pH and titratable acidity. Selecting for high casein content, milk acidity, and low somatic cell count might be an indirect way to improve MCP without reducing milk yield and quality traits.  相似文献   

2.
The objective of this study was to estimate genetic parameters for milk protein fraction contents, milk protein composition, and milk coagulation properties (MCP). Contents of αS1-, αS2-, β-, γ-, and κ-casein (CN), β-lactoglobulin (β-LG), and α-lactalbumin (α-LA) were measured by reversed-phase HPLC in individual milk samples of 2,167 Simmental cows. Milk protein composition was measured as percentage of each CN fraction in CN (αS1-CN%, αS2-CN%, β-CN%, γ-CN%, and κ-CN%) and as percentage of β-LG in whey protein (β-LG%). Rennet clotting time (RCT) and curd firmness (a30) were measured by a computerized renneting meter. Heritabilities for contents of milk proteins ranged from 0.11 (α-LA) to 0.52 (κ-CN). Heritabilities for αS1-CN%, κ-CN%, and β-CN% were similar and ranged from 0.63 to 0.69, whereas heritability of αS2-CN%, γ-CN%, and β-LG% were 0.28, 0.18, and 0.34, respectively. Effects of CSN2-CSN3 haplotype and BLG genotype accounted for more than 80% of the genetic variance of αS1-CN%, β-CN%, and κ-CN% and 50% of the genetic variance of β-LG%. The genetic correlations among the contents of CN fractions and between CN and whey protein fractions contents were generally low. When the data were adjusted for milk protein gene effects, the magnitude of the genetic correlations among the contents of milk protein fractions markedly increased, indicating that they undergo a common regulation. The proportion of β-CN in CN correlated negatively with κ-CN% (r = −0.44). The genetic relationships between CN and whey protein composition were trivial. Low milk pH correlated with favorable MCP. Genetically, contents and proportions of αS1- and αS2-CN in CN were positively correlated with RCT. The relative proportion of β-CN in CN exhibited a genetic correlation with RCT of −0.26. Both the content and the relative proportion of κ-CN in CN did not correlate with RCT. Weak curds were genetically associated with increased proportions in CN of αS1- and αS2-CN, decreased contents of β-CN and κ-CN, and decreased proportion of κ-CN in CN. Negligible effects on the estimated correlations between a30 and κ-CN contents or proportion in CN were observed when the model accounted for milk protein gene effects. Increasing β-CN and κ-CN contents and relative proportions in CN and decreasing the content and proportions of αS1-CN and αS2-CN and milk pH through selective breeding exert favorable effects on MCP.  相似文献   

3.
Milk coagulation and acidity traits are important factors to inform the cheesemaking process. Those traits have been deeply studied in bovine milk, whereas scarce information is available for buffalo milk. However, the dairy industry is interested in a method to determine milk coagulation and acidity features quickly and in a cost-effective manner, which could be provided by Fourier-transform mid-infrared (FT-MIR) spectroscopy. The aim of this study was to evaluate the potential of FT-MIR to predict coagulation and acidity traits of Mediterranean buffalo milk. A total of 654 records from 36 herds located in central Italy with information on milk yield, somatic cell score, milk chemical composition, milk acidity [pH, titratable acidity (TA)], and milk coagulation properties (rennet coagulation time, curd firming time, and curd firmness) were available for statistical analysis. Reference measures of milk acidity and coagulation properties were matched with milk spectral information, and FT-MIR prediction models were built using partial least squares regression. The data set was divided into a calibration set (75%) and a validation set (25%). The capacity of FT-MIR spectroscopy to correctly classify milk samples based on their renneting ability was evaluated by a canonical discriminant analysis. Average values for milk coagulation traits were 13.32 min, 3.24 min, and 39.27 mm for rennet coagulation time, curd firming time, and curd firmness, respectively. Milk acidity traits averaged 6.66 (pH) and 7.22 Soxhlet-Henkel degrees/100 mL (TA). All milk coagulation and acidity traits, except for pH, had high variability (17 to 46%). Prediction models of coagulation traits were moderately to scarcely accurate, whereas the coefficients of determination of external validation were 0.76 and 0.66 for pH and TA, respectively. Canonical discriminant analysis indicated that information on milk coagulating ability is present in the MIR spectra, and the model correctly classified as noncoagulating the 91.57 and 67.86% of milk samples in the calibration and validation sets, respectively. In conclusion, our results can be relevant to the dairy industry to classify buffalo milk samples before processing.  相似文献   

4.
Milk coagulation is an important processing trait, being the basis for production of both cheese and fermented products. There is interest in including technological properties of these products in the breeding goal for dairy cattle. The aim of the present study was therefore to estimate genetic parameters for milk coagulation properties, including both rennet- and acid-induced coagulation, in Swedish Red dairy cattle using genomic relationships. Morning milk samples and blood samples were collected from 395 Swedish Red cows that were selected to be as genetically unrelated as possible. Using a rheometer, milk samples were analyzed for rennet- and acid-induced coagulation properties, including gel strength (G′), coagulation time, and yield stress (YS). In addition to the technological traits, milk composition was analyzed. A binary trait was created to reflect that milk samples that had not coagulated 40 min after rennet addition were considered noncoagulating milk. The cows were genotyped by using the Illumina BovineHD BeadChip (Illumina Inc., San Diego, CA). Almost 600,000 markers remained after quality control and were used to construct a matrix of genomic relationships among the cows. Multivariate models including fixed effects of herd, lactation stage, and parity were fitted using the ASReml software to obtain estimates of heritabilities and genetic and phenotypic correlations. Heritability estimates (h2) for G′ and YS in rennet and acid gels were found to be high (h2 = 0.38–0.62) and the genetic correlations between rennet-induced and acid-induced coagulation properties were weak but favorable, with the exception of YSrennet with G′acid and YSacid, both of which were strong. The high heritability (h2 = 0.45) for milk coagulating ability expressed as a binary trait suggests that noncoagulation could be eliminated through breeding. Additionally, the results indicated that the current breeding objective could increase the frequency of noncoagulating milk and lead to deterioration of acid-induced coagulation through unfavorable genetic associations with protein content (0.38) and milk yield (−0.61 to −0.71), respectively. The outcome of this study suggests that by including more detailed compositional traits genetically associated with milk coagulation or by including milk coagulation properties directly within the breeding goal, it appears possible to breed cows that produce milk better suited for production of cheese and fermented products.  相似文献   

5.
The objective of this study was to estimate heritabilities and repeatabilities for milk coagulation traits [milk coagulation time (RCT) and curd firmness (E30)] and genetic and phenotypic correlations between milk yield and composition traits (milk fat percentage and protein percentage, urea, somatic cell count, pH) in first-lactation Estonian Holstein dairy cattle. A total of 17,577 test-day records from 4,191 Estonian Holstein cows in 73 herds across the country were collected during routine milk recordings. Measurements of RCT and E30 determined with the Optigraph (Ysebaert, Frepillon, France) are based on an optical signal in the near-infrared region. The cows had at least 3 measurements taken during the period from April 2005 to January 2009. Data were analyzed using a repeatability animal model. There was substantial variation in milk coagulation traits with a coefficient of variation of 27% for E30 and 9% for the log-transformed RCT. The percentage of variation explained by herd was 3% for E30 and 4% for RCT, suggesting that milk coagulation traits are not strongly affected by herd conditions (e.g., feeding). Heritability was 0.28 for RCT and 0.41 for E30, and repeatability estimates were 0.45 and 0.50, respectively. Genetic correlation between both milk coagulation traits was negligible, suggesting that RCT and E30 have genetically different foundations. Milk coagulation time had a moderately high positive genetic (0.69) and phenotypic (0.61) correlation with milk pH indicating that a high pH is related to a less favorable RCT. Curd firmness had a moderate positive genetic (0.48) and phenotypic (0.45) correlation with the protein percentage. Therefore, a high protein percentage is associated with favorable curd firmness. All reported genetic parameters were statistically significantly different from zero. Additional univariate random regression analysis for milk coagulation traits yielded slightly higher average heritabilities of 0.38 and 0.47 for RCT and E30 compared with the heritabilities of the repeatability model.  相似文献   

6.
The objectives of the study were to estimate the reproducibility and repeatability of milk coagulation properties (MCP) measured by a computerized renneting meter (CRM) and to evaluate the predictive ability of mid-infrared spectroscopy (MIRS) as an innovative technology for the assessment of rennet coagulation time (RCT, min) and curd firmness (a30, mm). Four samples without addition of preservative (NP) and 4 samples with Bronopol addition (PS) were collected from each of 83 Holstein-Friesian cows. Six hours after collection, 2 replicated measures of MCP were obtained with CRM using 1 NP and 1 PS sample from each cow. Mid-infrared spectra of the remaining NP and PS samples from each animal were recorded after 6 h, 4 d, and 8 d after sampling. Two groups of calibration equations were developed using MIRS spectra and CRM measures of MCP as reference data obtained from analysis of NP and PS, respectively. Reproducibility and repeatability of CRM measures were obtained from REML estimation of variance components on the basis of a linear model including the fixed effects of herd and days in milk class and the random effects of cows, sample treatment (addition or no addition of preservative), and the interaction between cow and sample treatment. Coefficient of reproducibility is an indicator of the agreement between 2 measurements of MCP for the same milk sample preserved with or without addition of Bronopol. Coefficient of repeatability is an indicator of the agreement between repeated measures of MCP. Pearson correlations between MCP measures for NP and PS were 0.97 and 0.83 for RCT and a30, respectively. Reproducibility of CRM measures under different preserving conditions of milk was 93.5% for RCT and 64.6% for a30. Repeatabilities of RCT and a30 measures were 95.7 and 77.3%, respectively. Based on the estimated cross-validation standard errors and coefficients of determination and ratios of standard errors of cross-validation to standard deviation of reference data, the predictive ability of MIRS calibration equations was moderate for RCT and unsatisfactory for a30. Predictive ability of equations based on spectra and MCP measures of PS was greater than that of equations based on data of NP. The study did not provide conclusive evidence on the effectiveness of MIRS as a predictive tool for MCP and it requires an enlargement of the variability of milk sampling circumstances. Because the relevance of MIRS predictions in relation to breeding programs for MCP based on indicator traits relies on the genetic variation of MIRS predictions and on phenotypic and genetic correlations between MIRS predictions and MCP measures, additional specific investigations on these topics are needed.  相似文献   

7.
Genetic and phenotypic correlations between milk coagulation properties (MCP: coagulation time and curd firmness), milk yield, fat content, protein content, ln(somatic cell count) (SCS), casein content, and pH of milk and heritability of these traits were estimated from data consisting of milk samples of 4664 Finnish Ayrshire cows sired by 91 bulls. In addition, differences in average estimated breeding values (EBV) for the above traits between the cows with noncoagulating (NC) milk and those with milk that coagulated (CO samples) were examined. The estimations were carried out to study the possibilities of indirect genetic improvement of MCP by use of the above characteristics. The genetic and phenotypic correlations between MCP and the milk production traits were low or negligible. The genetic associations between desirable MCP and low SCS were rather strong (-0.45 to 0.29). Desirable MCP correlated both genetically and phenotypically with low pH of milk (-0.51 to 0.50). The rather high heritability estimates for curd firmness in different forms (0.22 to 0.39), and the wide variation in the proportion of daughters producing NC milk between the sires (0 to 47%) suggested that noncoagulation of milk is partly caused by additive genetic factors. Based on the genetic correlations between curd firmness and SCS and the high EBV for SCS obtained for the cows with NC-milk, it is possible that the loci causing noncoagulation of milk and increasing somatic cell count of milk are closely linked or partly the same. One means to genetically improve MCP and to reduce the occurrence of NC milk could thus be selection for low somatic cell count of milk.  相似文献   

8.
This study investigated the potential application of mid-infrared spectroscopy (MIR 4,000-900 cm−1) for the determination of milk coagulation properties (MCP), titratable acidity (TA), and pH in Brown Swiss milk samples (n = 1,064). Because MCP directly influence the efficiency of the cheese-making process, there is strong industrial interest in developing a rapid method for their assessment. Currently, the determination of MCP involves time-consuming laboratory-based measurements, and it is not feasible to carry out these measurements on the large numbers of milk samples associated with milk recording programs. Mid-infrared spectroscopy is an objective and nondestructive technique providing rapid real-time analysis of food compositional and quality parameters. Analysis of milk rennet coagulation time (RCT, min), curd firmness (a30, mm), TA (SH°/50 mL; SH° = Soxhlet-Henkel degree), and pH was carried out, and MIR data were recorded over the spectral range of 4,000 to 900 cm−1. Models were developed by partial least squares regression using untreated and pretreated spectra. The MCP, TA, and pH prediction models were improved by using the combined spectral ranges of 1,600 to 900 cm−1, 3,040 to 1,700 cm−1, and 4,000 to 3,470 cm−1. The root mean square errors of cross-validation for the developed models were 2.36 min (RCT, range 24.9 min), 6.86 mm (a30, range 58 mm), 0.25 SH°/50 mL (TA, range 3.58 SH°/50 mL), and 0.07 (pH, range 1.15). The most successfully predicted attributes were TA, RCT, and pH. The model for the prediction of TA provided approximate prediction (R2 = 0.66), whereas the predictive models developed for RCT and pH could discriminate between high and low values (R2 = 0.59 to 0.62). It was concluded that, although the models require further development to improve their accuracy before their application in industry, MIR spectroscopy has potential application for the assessment of RCT, TA, and pH during routine milk analysis in the dairy industry. The implementation of such models could be a means of improving MCP through phenotypic-based selection programs and to amend milk payment systems to incorporate MCP into their payment criteria.  相似文献   

9.
Many countries have pledged to reduce greenhouse gases. In this context, the dairy sector is one of the identified sectors to adapt production circumstances to address socio-environmental constraints due to its large carbon footprint related to CH4 emission. This study aimed mainly to estimate (1) the genetic parameters of 2 milk mid-infrared-based CH4 proxies [predicted daily CH4 emission (PME, g/d), and log-transformed predicted CH4 intensity (LMI)] and (2) their genetic correlations with milk production traits [milk (MY), fat (FY), and protein (PY) yields] from first- and second-parity Holstein cows. A total of 336,126 and 231,400 mid-infrared CH4 phenotypes were collected from 56,957 and 34,992 first- and second-parity cows, respectively. The PME increased from the first to the second lactation (433 vs. 453 g/d) and the LMI decreased (2.93 vs. 2.86). We used 20 bivariate random regression test-day models to estimate the variance components. Moderate heritability values were observed for both CH4 traits, and those values decreased slightly from the first to the second lactation (0.25 ± 0.01 and 0.22 ± 0.01 for PME; 0.18 ± 0.01 and 0.17 ± 0.02 for LMI). Lactation phenotypic and genetic correlations were negative between PME and MY in both first and second lactations (?0.07 vs. ?0.07 and ?0.19 vs. ?0.24, respectively). More close scrutiny revealed that relative increase of PME was lower with high MY levels even reverting to decrease, and therefore explaining the negative correlations, indicating that higher producing cows could be a mitigation option for CH4 emission. The PME phenotypic correlations were almost equal to 0 with FY and PY for both lactations. However, the genetic correlations between PME and FY were slightly positive (0.11 and 0.12), whereas with PY the correlations were slightly negative (?0.05 and ?0.04). Both phenotypic and genetic correlations between LMI and MY or PY or FY were always relatively highly negative (from ?0.21 to ?0.88). As the genetic correlations between PME and LMI were strong (0.71 and 0.72 in first and second lactation), the selection of one trait would also strongly influence the other trait. However, in animal breeding context, PME, as a direct quantity CH4 proxy, would be preferred to LMI, which is a ratio trait of PME with a trait already in the index. The range of PME sire estimated breeding values were 22.1 and 29.41 kg per lactation in first and second parity, respectively. Further studies must be conducted to evaluate the effect of the introduction of PME in a selection index on the other traits already included in this index, such as, for instance, fertility or longevity.  相似文献   

10.
Milk coagulation properties (MCP) are conventionally measured using computerized renneting meters, mechanical or optical devices that record curd firmness over time (CFt). The traditional MCP are rennet coagulation time (RCT, min), curd firmness (a30, mm), and curd-firming time (k20, min). The milk of different ruminant species varies in terms of CFt pattern. Milk from Holstein-Friesian and some Scandinavian cattle breeds yields higher proportions of noncoagulating samples, samples with longer RCT and lower a30, and samples for which k20 is not estimable, than does milk from Brown Swiss, Simmental, and other local Alpine breeds. The amount, proportion, and genetic variants (especially κ-casein) of milk protein fractions strongly influence MCP and explain variable proportions of the observed differences among breeds and among individuals of the same breed. In addition, other major genes have been shown to affect MCP. Individual repeatability of MCP is high, whereas any herd effect is low; thus, the improvement of MCP should be based principally on selection. Exploitable additive genetic variation in MCP exists and has been assessed using different breeds in various countries. Several models have been formulated that either handle noncoagulating samples or not. The heritability of MCP is similar to that of other milk quality traits and is higher than the heritability of milk yield. Rennet coagulation time and a30 are highly correlated, both phenotypically and genetically. This means that the use of a30 data does not add valuable information to that obtainable from RCT; both traits are genetically correlated mainly with milk acidity. Moreover, a30 is correlated with casein content. The major limitations of traditional MCP can be overcome by prolonging the observation period and by using a novel CFt modeling, which uses all available information provided by computerized renneting meters and allows the estimation of RCT, the potential asymptotic curd firmness, the curd-firming rate, and the syneresis rate. Direct measurements of RCT obtained from both mechanical and optical devices show similar heritabilities and exhibit high phenotypic and genetic correlations. Moreover, mid-infrared reflectance spectroscopy can predict MCP. The heritabilities of predicted MCP are higher than those of measured MCP, and the 2 sets of values are strongly correlated. Therefore, mid-infrared reflectance spectroscopy is a reliable and cheap method whereby MCP can be improved at the population level; this is because such spectra are already routinely acquired from the milk of cows enrolled in milk recording schemes.  相似文献   

11.
Breeding objectives in the dairy industry have shifted from being solely focused on production to including fertility, animal health, and environmental impact. Increased serum concentrations of candidate biomarkers of health and fertility, such as β-hydroxybutyric acid (BHB), fatty acids, and urea are difficult and costly to measure, and thus limit the number of records. Accurate genomic prediction requires a large reference population. The inclusion of milk mid-infrared (MIR) spectroscopic predictions of biomarkers may increase genomic prediction accuracy of these traits. Our objectives were to (1) estimate the heritability of, and genetic correlations between, selected serum biomarkers and their respective MIR predictions, and (2) evaluate genomic prediction accuracies of either only measured serum traits, or serum traits plus MIR-predicted traits. The MIR-predicted traits were either fitted in a single trait model, assuming the measured trait and predicted trait were the same trait, or in a multitrait model, where measured and predicted trait were assumed to be correlated traits. We performed all analyses using relationship matrices constructed from pedigree (A matrix), genotypes (G matrix), or both pedigree and genotypes (H matrix). Our data set comprised up to 2,198 and 9,657 Holstein cows with records for serum biomarkers and MIR-predicted traits, respectively. Heritabilities of measured serum traits ranged from 0.04 to 0.07 for BHB, from 0.13 to 0.21 for fatty acids, and from 0.10 to 0.12 for urea. Heritabilities for MIR-predicted traits were not significantly different from those for the measured traits. Genetic correlations between measured traits and MIR-predicted traits were close to 1 for urea. For BHB and fatty acids, genetic correlations were lower and had large standard errors. The inclusion of MIR predicted urea substantially increased prediction accuracy for urea. For BHB, including MIR-predicted BHB reduced the genomic prediction accuracy, whereas for fatty acids, prediction accuracies were similar with either measured fatty acids, MIR-predicted fatty acids, or both. The high genetic correlation between urea and MIR-predicted urea, in combination with the increased prediction accuracy, demonstrated the potential of using MIR-predicted urea for genomic prediction of urea. For BHB and fatty acids, further studies with larger data sets are required to obtain more accurate estimates of genetic correlations.  相似文献   

12.
The aim of this study was to elucidate the structure of relationships between milk yield, composition, and coagulation properties of Brown Swiss cattle. Multivariate factor analysis was used to derive new synthetic variables that can be used for selection purposes. For this reason, genetic parameters of these new variables were estimated. Individual records on milk yield, fat and protein percentages, casein content, lactose percentage, somatic cell count, titratable acidity, and pH were taken on 1,200 Italian Brown Swiss cows located in 38 herds. Factor analysis was able to extract 4 latent variables with an associated communality equal to 70% of the total original variance. The 4 latent factors were interpreted as indicators of milk composition, coagulation, acidity, and mammary gland health, respectively. Factor scores calculated for each animal exhibited coherent patterns along the lactation and across different parities. Estimation of genetic parameters of factor scores carried out with a multiple-trait Bayesian hierarchical model showed moderate to low heritabilities (raging from 0.10 to 0.23) and genetic correlations (from −0.15 to 0.46). Results of the present study support the hypothesis of a simpler structure that controls, at least in part, the covariance of milk composition and coagulation properties. Moreover, extracted variables may be useful for both breeding and management purposes, being able to represent, with a single value for each animal, complex traits such as milk coagulation properties or health status of the mammary gland.  相似文献   

13.
Milk coagulation is based on a series of physicochemical changes at the casein micelle level, resulting in formation of a gel. Milk coagulation properties (MCP) are relevant for cheese quality and yield, important factors for the dairy industry. They are also evaluated in herd bulk milk to reward or penalize producers of Protected Designation of Origin cheeses. The economic importance of improving MCP justifies the need to account for this trait in the selection process. A pilot study was carried out to determine the feasibility of including MCP in the selection schemes of the Italian Holstein. The MCP were predicted in 1,055 individual milk samples collected in 16 herds (66 ± 24 cows per herd) located in Brescia province (northeastern Italy) by means of Fourier transform infrared (FTIR) spectroscopy. The coefficient of determination of prediction models indicated moderate predictions for milk rennet coagulation time (RCT = 0.65) and curd firmness (a30 = 0.68), and poor predictions for curd-firming time (k20 = 0.49), whereas the range error ratio (8.9, 6.9, and 9.5 for RCT, k20, and a30, respectively) indicated good practical utility of the predictive models for all parameters. Milk proteins were genotyped and casein haplotypes (αS1-, β-, αS2-, and κ-casein) were reconstructed. Data from 51 half-sib families (19.9 ± 16.4 daughters per sire) were analyzed by an animal model to estimate (1) the genetic parameters of predicted RCT, k20, and a30; (2) the breeding values for these predicted clotting variables; and (3) the effect of milk protein genotypes and casein haplotypes on predicted MCP (pMCP). This is the first study to estimate both genetic parameters and breeding values of pMCP, together with the effects of milk protein genotypes and casein haplotypes, that also considered k20, probably the most important parameter for the dairy industry (because it indicates the time for the beginning of curd-cutting). Heritability of predicted RCT (0.26) and k20 (0.31) were close to the average heritability described in literature, whereas the heritability of a30 was higher (0.52 vs. 0.27). The effects of milk proteins were statistically significant and similar to those obtained on measured MCP. In particular, haplotypes including uncommon variants showed positive (B-I-A-B) or negative (B-A1-A-E) effects. Based on these findings, FTIR spectroscopy-pMCP is proposed as a potential selection criterion for the Italian Holstein.  相似文献   

14.
Genetic parameters of milk rennet coagulation time (RCT) and curd firmness (a30) among the first 3 lactations in Holstein cows were estimated. The data set included 39,960 test-day records from 5,216 Estonian Holstein cows (the progeny of 306 sires), which were recorded from April 2005 to May 2010 in 98 herds across the country. A multiple-lactation random regression animal model was used. Individual milk samples from each cow were collected during routine milk recording. These samples were analyzed for milk composition and coagulation traits with intervals of 2 to 3 mo in each lactation (7 to 305 DIM) and from first to third lactation. Mean heritabilities were 0.36, 0.32, and 0.28 for log-transformed RCT [ln(RCT)] and 0.47, 0.40, and 0.62 for a30 for parities 1, 2, and 3, respectively. Mean repeatabilities for ln(RCT) were 0.53, 0.55, and 0.56, but 0.59, 0.61, and 0.68 for a30 for parities 1, 2 and 3, respectively. Mean genetic correlations between ln(RCT) and a30 were −0.19, −0.14, and 0.02 for parities 1, 2, and 3, respectively. Mean genetic correlations were 0.91, 0.79, and 0.99 for ln(RCT), and 0.95, 0.94, and 0.94 for a30 between parities 1 and 2, 1 and 3, and 2 and 3, respectively. Due to these high genetic correlations, we concluded that for a proper genetic evaluation of milk coagulation properties it is sufficient to record RCT and a30 only in the first lactation.  相似文献   

15.
Interest in methods that routinely and accurately measure and predict animal characteristics is growing in importance, both for quality characterization of livestock products and for genetic purposes. Mid-infrared spectroscopy (MIRS) is a rapid and cost-effective tool for recording phenotypes at the population level. Mid-infrared spectroscopy is based on crossing matter by electromagnetic radiation and on the subsequent measure of energy absorption, and it is commonly used to determine traditional milk quality traits in official milk laboratories. The aim of this review was to focus on the use of MIRS to predict new milk phenotypes of economic relevance such as fatty acid and protein composition, coagulation properties, acidity, mineral composition, ketone bodies, body energy status, and methane emissions. Analysis of the literature demonstrated the feasibility of MIRS to predict these traits, with different accuracies and with margins of improvement of prediction equations. In general, the reviewed papers underlined the influence of data variability, reference method, and unit of measurement on the development of robust models. A crucial point in favor of the application of MIRS is to stimulate the exchange of data among countries to develop equations that take into account the biological variability of the studied traits under different conditions. Due to the large variability of reference methods used for MIRS calibration, it is essential to standardize the methods used within and across countries.  相似文献   

16.
The milk metabolomes of 407 individual Swedish Red dairy cows were analyzed by nuclear magnetic resonance spectroscopy as part of the Danish-Swedish Milk Genomics Initiative. By relating these metabolite profiles to total milk protein concentration and rheological measurements of rennet-induced milk coagulation together using multivariate data analysis techniques, we were able to identify several different associations of the milk metabolome to technological properties of milk. Several novel correlations of milk metabolites to protein content and rennet-induced coagulation properties were demonstrated. Metabolites associated with the prediction of total protein content included choline, N-acetyl hexosamines, creatinine, glycerophosphocholine, glutamate, glucose 1-phosphate, galactose 1-phosphate, and orotate. In addition, levels of lactate, acetate, glutamate, creatinine, choline, carnitine, galactose 1-phosphate, and glycerophosphocholine were significantly different when comparing noncoagulating and well-coagulating milks. These findings suggest that the mentioned metabolites are associated with milk protein content and rennet-induced coagulation properties and may act as quality markers for cheese milk.  相似文献   

17.
The aim of this study was to estimate heritabilities of rennet coagulation time (RCT) and curd firmness (a30) and their genetic correlations with test-day milk yield, composition (fat, protein, and casein content), somatic cell score, and acidity (pH and titratable acidity) using coagulating and noncoagulating (NC) milk information. Data were from 1,025 Holstein-Friesian (HF) and 1,234 Brown Swiss (BS) cows, which were progeny of 54 HF and 58 BS artificial insemination sires, respectively. Milk coagulation properties (MCP) of each cow were measured once using a computerized renneting meter and samples not exhibiting coagulation within 31 min after rennet addition were classified as NC milk. For NC samples, RCT was unobserved. Multivariate analyses, using Bayesian methodology, were performed to estimate the genetic relationships of RCT or a30 with the other traits and statistical inference was based on the marginal posterior distributions of parameters of concern. For analyses involving RCT, a right-censored Gaussian linear model was used and records of NC milk samples, being censored records, were included as unknown parameters in the model implementing a data augmentation procedure. Rennet coagulation time was more heritable [heritability (h2) = 0.240 and h2 = 0.210 for HF and BS, respectively] than a30 (h2 = 0.148 and h2 = 0.168 for HF and BS, respectively). Milk coagulation properties were more heritable than a single test-day milk yield (h2 = 0.103 and h2 = 0.097 for HF and BS, respectively) and less heritable than milk composition traits whose heritability ranged from 0.275 to 0.275, with the only exception of fat content of BS milk (h2 = 0.108). A negative genetic correlation, lower than −0.85, was estimated between RCT and a30 for both breeds. Genetic relationships of MCP with yield and composition were low or moderate and favorable. The genetic correlation of somatic cell score with RCT in BS cows was large and positive and even more positive were those of RCT with pH and titratable acidity in both breeds, ranging from 0.80 to 0.94. Including NC milk information in the data affected the estimated correlations and decreased the uncertainty associated with the estimation process. On the basis of the estimated heritabilities and genetic correlations, enhancement of MCP through selective breeding with no detrimental effects on yield and composition seems feasible in both breeds. Milk acidity may play a role as an indicator trait for indirect enhancement of MCP.  相似文献   

18.
Fourier-transform infrared (FTIR) spectra are used to predict the fat, protein, casein, and lactose contents of milk. These estimates are currently used to predict the individual estimated breeding values of animals. The objective of the present study was to estimate the genetic variation and heritabilities of the milk transmittance spectrum at each individual FTIR wave. Milk was sampled once per cow from a total of 1,064 Italian Brown Swiss cows from 30 herds, sired by 50 artificial insemination sires. The FTIR spectra of all samples were collected within 3 h of sampling from 25 mL of milk. The obtained spectral range comprised wavenumbers 5,000 to 930 × cm−1, corresponding to wavelengths 2.00 to 10.76 μm and frequencies from 149.9 to 27.9 THz, for a total of 1,056 waves. These were acquired using a MilkoScan FT120 FTIR interferometer (Foss Electric A/S, Hillerød, Denmark). Each spectral data point was treated as a single trait and analyzed using an animal model REML method. The results indicated that the transmittance of the bovine milk FTIR spectrum was heritable for most individual waves in the wavenumber interval from 5,000 to 930 × cm−1. Moreover, the transmittance of contiguous FTIR waves was much more highly correlated in terms of the average value and phenotypic variation, compared with genetic variation. In the present study, we characterized 5 regions of the FTIR spectrum that were relevant to the analysis of milk; 2 regions, one in the transition area between the short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) divisions of the electromagnetic spectrum (SWIR-MWIR region) and another very short region in the MWIR division (MWIR-2 region), were characterized by very high phenotypic variability in the transmittance of individual milk samples within each wave. This was caused by the absorption peaks of water, which can mask the effects of other important milk components. These regions also showed high genetic variability in transmittance, and the heritability estimates of individual waves were generally very low (with some exceptions). The 3 other identified regions contained many transmittance peaks that represented important chemical bonds; these showed much lower phenotypic and genetic variability in terms of individual waves, but relatively higher and less variable heritability estimates. Among them, the SWIR region (near-infrared) showed a peculiar cyclic pattern of the heritability coefficients of transmittance, the MWIR-1 region was particularly important for the estimation of fat, and the MWIR-LWIR region (also known also as the “fingerprint region”) had 3 areas of relatively high heritability. In summary, we found that the transmittance data from the FTIR spectra of milk have genetic variability that may prove useful for the direct genetic improvement of dairy species, rather than only through indirect phenotypic predictions of individual milk quality and technological traits.  相似文献   

19.
The aim of this study was to apply Bayesian models to the Fourier-transform infrared spectroscopy spectra of individual sheep milk samples to derive calibration equations to predict traditional and modeled milk coagulation properties (MCP), and to assess the repeatability of MCP measures and their predictions. Data consisted of 1,002 individual milk samples collected from Sarda ewes reared in 22 farms in the region of Sardinia (Italy) for which MCP and modeled curd-firming parameters were available. Two milk samples were taken from 87 ewes and analyzed with the aim of estimating repeatability, whereas a single sample was taken from the other 915 ewes. Therefore, a total of 1,089 analyses were performed. For each sample, 2 spectra in the infrared region 5,011 to 925 cm?1 were available and averaged before data analysis. BayesB models were used to calibrate equations for each of the traits. Prediction accuracy was estimated for each trait and model using 20 replicates of a training-testing validation procedure. The repeatability of MCP measures and their predictions were also compared. The correlations between measured and predicted traits, in the external validation, were always higher than 0.5 (0.88 for rennet coagulation time). We confirmed that the most important element for finding the prediction accuracy is the repeatability of the gold standard analyses used for building calibration equations. Repeatability measures of the predicted traits were generally high (≥95%), even for those traits with moderate analytical repeatability. Our results show that Bayesian models applied to Fourier-transform infrared spectra are powerful tools for cheap and rapid prediction of important traits in ovine milk and, compared with other methods, could help in the interpretation of results.  相似文献   

20.
Milk coagulation properties (MCP) analysis is performed using a wide range of methodologies in different countries and laboratories, using different instruments, coagulant activity in the milk, and type of coagulant. This makes it difficult to compare results and data from different research. The aims of this study were to propose a method for the transformation of values of rennet coagulation time (RCT) and curd firmness (a30) and to predict the noncoagulation (NC) probability of milk samples analyzed using different methodologies. Individual milk samples were collected during the morning milking in October 2010 from each of 165 Holstein-Friesian dairy cows in 2 freestall barns in Italy, and sent to 3 laboratories for MCP analysis. For each laboratory, MCP analysis was performed using a different methodology: A, with a computerized renneting meter instrument using 0.051 international milk clotting units (IMCU)/mL of coagulant activity; B, with a Lattodinamografo (Foss-Italia, Padova, Italy) using 0.051 IMCU/mL of coagulant activity; and C, with an Optigraph (Ysebaert, Frépillon, France) using 0.120 IMCU/mL of coagulant activity. The relationships between MCP traits were analyzed with correlation and regression analyses for each pair of methodologies. For each MCP trait, 2 regression models were applied: model 1 was a single regression model, where the dependent and independent variables were the same MCP trait determined by 2 different methodologies; in model 2, both a30 and RCT were included as independent variables. The NC probabilities for laboratories with the highest number of NC samples were predicted based on the RCT and a30 values measured in the laboratories with lower number of NC samples using logistic regression and receiver operating characteristic analysis. The percentages of NC samples were 4.2, 11.5, and 0.6% for A, B, and C, respectively. The transformation of MCP traits was more precise with model 1 for RCT (R2: 0.77-0.82) than for a30 (R2: 0.28-0.63). The application of model 2 was needed when the C measurements were transformed into the other scales. The analyses of NC probabilities of milk samples showed that NC samples from one methodology were well distinguishable (with an accuracy of 0.972-0.996) based on the rennet coagulation time measured with the other methodology. A standard definition for MCP traits analysis is needed to enable reliable comparisons between MCP traits recorded in different laboratories and in different animal populations and breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号