首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
In the United States, lactation yields are calculated using best prediction (BP), a method in which test-day (TD) data are compared with breed- and parity-specific herd lactation curves that do not account for differences among regions of the country or seasons of calving. Complete data from 538,090 lactations of 348,123 Holstein cows with lactation lengths between 250 and 500 d, records made in a single herd, at least 5 reported TD, and twice-daily milking were extracted from the national dairy database and used to construct regional and seasonal lactation curves. Herds were assigned to 1 of 7 regions of the country, individual lactations were assigned to 3-mo seasons of calving, and lactation curves for milk, fat, and protein yields were estimated by parity group for regions, seasons, and seasons within regions. Multiplicative pre-adjustment factors (MF) also were computed. The resulting lactation curves and MF were tested on a validation data set of 891,806 lactations from 400,000 Holstein cows sampled at random from the national dairy database. Mature-equivalent milk, fat, and protein yields were calculated using the standard and adjusted curves and MF, and differences between 305-d mature-equivalent yields were tested for significance. Yields calculated using 50-d intervals from 50 to 250 d in milk (DIM) and using all TD to 500 DIM allowed comparisons of predictions for records in progress (RIP). Differences in mature-equivalent milk ranged from 0 to 51 kg and were slightly larger for first-parity than for later parity cows. Milk and components yields did not differ significantly in any case. Correlations of yields for 50-d intervals with those using all TD were similar across analyses. Yields for RIP were slightly more accurate when adjusted for regional and seasonal differences.  相似文献   

2.
The Canadian Test-Day Model includes test-day (TD) records from 5 to 305 d in milk (DIM). Because 60% of Canadian Holstein cows have at least one lactation longer than 305 d, a significant number of TD records beyond 305 DIM could be included in the genetic evaluation. The aim of this study was to investigate whether TD records beyond 305 DIM could be useful for estimation of 305-d estimated breeding value (EBV) for milk, fat, and protein yields and somatic cell score. Data were 48,638,184 TD milk, fat, and protein yields and somatic cell scores from the first 3 lactations of 2,826,456 Canadian Holstein cows. All production traits were preadjusted for the effect of pregnancy. Subsets of data were created for variance-component estimation by random sampling of 50 herds. Variance components were estimated using Gibbs sampling. Full data sets were used for estimation of breeding values. Three multiple-trait, multiple-lactation random regression models with TD records up to 305 DIM (M305), 335 DIM (M335), and 365 DIM (M365) were fitted. Two additional models (M305a and M305b) used TD records up to 305 DIM and variance components previously estimated by M335 and M365, respectively. The effects common to all models were fixed effects of herd × test-date and DIM class, fixed regression on DIM nested within region × age × season class, and random regressions for additive genetic and permanent environmental effects. Legendre polynomials of order 6 and 4 were fitted for fixed and random regressions, respectively. Rapid increase of additive genetic and permanent environmental variances at extremes of lactations was observed with all 3 models. The increase of additive genetic and permanent environmental variances was at earlier DIM with M305, resulting in greater variances at 305 DIM with M305 than with M335 and M365. Model M305 had the best ability to predict TD yields from 5 through 305 DIM and less error of prediction of 305-d EBV than M335 and M365. Model M335 had smaller change of 305-d EBV of bulls over the period of 7 yr than did M305 and M365. Model M305a had the least error of prediction and change of 305-d EBV from all models. Therefore, the use of TD records of Holstein cows from 5 through 305 DIM and variance components estimated using records up to 335 DIM is recommended for the Canadian Test-Day Model.  相似文献   

3.
The objectives of this study were to compare the multiple trait prediction (MTP) model estimate of 305-d lactation yield with the 305-d daily milk yield data from on-farm automated meters and software and to examine the accuracy of electronic identification (ID). Twenty-four-hour milk and component yields are calculated by using milk weights and samples collected 8 to 10 times/yr by Dairy Herd Improvement (DHI) organizations. Daily milk weights were collected from cows on 20 Canadian farms that used parlor milking systems with electronic ID and that were enrolled in a regular DHI program. A total of 10,175 DHI test days from 1,103 cows with complete 305-d lactation yields were entered into the MTP model, and lactation yields were predicted. Test days were grouped into first, second, and third and greater lactations and within each lactation group, days in milk were categorized in 3 stages (5 to 60, 61 to 120, and 120 to 305 d in milk) for a total of 9 classes. Agreement analysis was used to compare the 305-d sum of daily milk to the MTP 305-d lactation yield predictions by using inputs from test days throughout the lactations. Results indicated that the MTP model overestimated lactation yields across all parity groups, ranging from 310 to 1,552 kg in parity 1, 640 to 2,000 kg in parity 2, and 567 to 1,476 kg in parity 3 and greater. A preliminary examination of electronic ID accuracy was conducted on 4 farms. Two electronic ID systems were examined for cow ID accuracy by verifying the ID number appearing in the parlor with the corresponding ear tag number. There were no ID errors on 3 of 4 farms tested and only a very small number of errors (3/80) on the fourth farm, indicating that the electronic ID systems used in milking parlors identify cows accurately.  相似文献   

4.
A method to detect and to adjust or exclude abnormally low or high milk, fat, and protein yields on test-day (TD) was developed. Predicted TD yield is calculated based on preceding and subsequent (if available) TD yields. Observed TD yields that are < 60% or > 150% of predicted TD yield are defined as abnormal. Most abnormal yields are adjusted to this floor or ceiling, but some are excluded. Yields of < 4.5 kg that are identified as from a cow that was sick or that are less than half the mean of adjacent tests are excluded as are yields of > 59 kg above predicted yield. Lactation yields are calculated from the restricted TD yields. When this procedure was applied to 2002 data, 1.8% of milk, 2.4% of fat, and 1.6% of protein yields on TD were below the acceptance range and 0.1% of milk and protein and 0.8% of fat were above. Predicted TD yield was calculated as preceding TD yield plus preceding test interval multiplied by daily yield change (slope) based on days in milk (DIM), DIM2, previous normal TD yield, and interaction between DIM and previous TD yield. To accommodate changes in slope at peak yield, separate coefficients were estimated for < 50 and > or = 50 DIM. Herd mean was used when only one TD was recorded for a cow (or when two were recorded and the second was designated as abnormal based on the first) and to determine an acceptable range for component percentages. Predicted TD yield for first TD was based on subsequent rather than previous normal TD. To test the adjustments, lactation records with one abnormal TD yield or more were matched with subsequent lactation records. Correlation between consecutive lactations increased from 0.692 to 0.693 for milk (561,063 lactation pairs), from 0.653 to 0.660 for fat (951,387 lactation pairs), and from 0.686 to 0.694 for protein (488,653 lactation pairs). Outlier adjustment improved the correlation between consecutive lactation yields and is applied routinely to TD records of cows for calvings since 1997.  相似文献   

5.
Records representing data from 1,500 barren Holstein cows over an 8-yr period from a large commercial dairy farm in northern Mexico were analyzed to determine the effects of lactation number and season and year of initiation of lactation on milk production of cows induced hormonally into lactation and treated with recombinant bovine somatotropin (rbST) throughout lactation. Peak and 305-d milk yields were also assessed as predictors of total milk yield in cows induced into lactation. A significant quadratic relationship was found between 305-d milk yield and number of lactation [7,607 ± 145 and 9,548 ± 181 kg for first- and ≥6-lactation cows, respectively; mean ± standard error of the mean (SEM)] with the highest production occurring in the fifth lactation. Total milk yields of cows with ≤2 lactations were approximately 4,500 kg less than milk yields of adult cows (the overall average ± standard milk yield was 13,544 ± 5,491 kg per lactation and the average lactation length was 454 ± 154 d). Moreover, 305-d milk production was depressed in cows induced into lactation in spring (8,804 ± 153 kg; mean ± SEM) and summer (8,724 ± 163 kg) than in fall (9,079 ± 151 kg) and winter (9,085 ± 143 kg). Partial regression coefficients for 305-d milk yield and peak milk yield indicated an increment of 157 kg of milk per lactation per 1-kg increase in peak milk yield (r2 = 0.69). Neither peak milk yield (r2 = 0.18) nor 305-d milk yield (r2 = 0.29) was accurate for predicting total milk yield per lactation. Year, parity, and season effects had significant influence on milk yield of cows induced into lactation and treated with rbST throughout lactation, and peak milk yield can assist in the prediction of 305-d milk yield but not total milk yield. This study also showed that hormonal induction of lactation in barren high-yielding cows is a reliable, practical, and affordable technique in countries where rbST treatment and prolonged steroid administration of dairy cows are legally permitted.  相似文献   

6.
This study compared genetic evaluations from 3 test-day (TD) models with different assumptions about the environmental covariance structure for TD records and genetic evaluations from 305-d lactation records for dairy cows. Estimates of genetic values of 12,071 first-lactation Holstein cows were obtained with the 3 TD models using 106,472 TD records. The compound symmetry (CS) model was a simple test-day repeatability animal model with compound symmetry covariance structure for TD environmental effects. The ARs and ARe models also used TD records but with a first-order autoregressive covariance structure among short-term environmental effects or residuals, respectively. Estimates of genetic values with the TD models were also compared with those from a model using 305-d lactation records. Animals were genetically evaluated for milk, fat, and protein yields, and somatic cell score (SCS). The largest average estimates of accuracy of predicted breeding values were obtained with the ARs model and the smallest were with the 305-d model. The 305-d model resulted in smaller estimates of correlations between average predicted breeding values of the parents and lactation records of their daughters for milk and protein yields and SCS than did the CS and ARe models. Predicted breeding values with the 3 TD models were highly correlated (0.98 to 1.00). Predicted breeding values with 305-d lactation records were moderately correlated with those with TD models (0.71 to 0.87 for sires and 0.80 to 0.87 for cows). More genetic improvement can be achieved by using TD models to select for animals for higher milk, fat, and protein yields, and lower SCS than by using models with 305-d lactation records.  相似文献   

7.
Genetic parameters of milk, fat, and protein yields were estimated in the first 3 lactations for registered Tunisian Holsteins. Data included 140,187; 97,404; and 62,221 test-day production records collected on 22,538; 15,257; and 9,722 first-, second-, and third-parity cows, respectively. Records were of cows calving from 1992 to 2004 in 96 herds. (Co)variance components were estimated by Bayesian methods and a 3-trait-3-lactation random regression model. Gibbs sampling was used to obtain posterior distributions. The model included herd × test date, age × season of calving × stage of lactation [classes of 25 days in milk (DIM)], production sector × stage of lactation (classes of 5 DIM) as fixed effects, and random regression coefficients for additive genetic, permanent environmental, and herd-year of calving effects, which were defined as modified constant, linear, and quadratic Legendre coefficients. Heritability estimates for 305-d milk, fat and protein yields were moderate (0.12 to 0.18) and in the same range of parameters estimated in management systems with low to medium production levels. Heritabilities of test-day milk and protein yields for selected DIM were higher in the middle than at the beginning or the end of lactation. Inversely, heritabilities of fat yield were high at the peripheries of lactation. Genetic correlations among 305-d yield traits ranged from 0.50 to 0.86. The largest genetic correlation was observed between the first and second lactation, potentially due to the limited expression of genetic potential of superior cows in later lactations. Results suggested a lack of adaptation under the local management and climatic conditions. Results should be useful to implement a BLUP evaluation for the Tunisian cow population; however, results also indicated that further research focused on data quality might be needed.  相似文献   

8.
Multiparous Holstein cows (n = 300) were assigned to 1 of 2 milking frequency treatments at parturition. Cows were either milked 6 times (6×) or 3 times (3×) daily to determine effects on early lactation milk yields and subsequent lactation persistency with or without use of recombinant bST (rbST). Treatments included a control group milked 3× and 3 groups milked 6× for either the first 7, 14, or 21 days in milk (DIM). Those 4 groups of cows all received rbST starting at 63 DIM. The fifth treatment group was also milked 6× for the first 21 DIM but those cows received no rbST during the entire lactation. All cows returned to 3× milking after their respective treatment periods ended. Cows milked 3× tended to produce more milk (43.2 vs. 41.5 and 41.0 ± 1.1 kg/d) during the first 9 wk of lactation compared with cows milked 6× for 7 or 21 DIM, respectively. Group milk yields after wk 9 averaged 38.3 ± 0.7 kg/d and did not differ among various groups assigned to an increased milking frequency in early lactation. Percentages of milk fat (3.8 ± 0.12%) and protein (2.9 ± 0.06%) did not differ among treatments during the first 9 wk after calving. Early lactation milk yield (41.9 ± 1.2 kg/d) did not differ between the 2 groups of cows milked 6× for 21 DIM. However, cows subsequently administered rbST (at 63 DIM) produced more milk (38.8 vs. 34.2 ± 0.9 kg/d) from wk 10 to 44. The number of cows sent to the hospital during the 305-d trial for mastitis (97), digestive disorders (14), respiratory issues (9), lameness (22), or retained placenta (16), were not affected by treatments (χ2 = 0.49). Under the conditions of this commercial dairy herd in Arizona, increasing milking frequency to 6 times daily for 7 to 21 d at the start of lactation conditions did not increase milk yield nor improve lactation persistency.  相似文献   

9.
The objectives of this study were to calculate the heritability of feed efficiency and residual feed intake, and examine the relationships between feed efficiency and other traits of productive and economic importance. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive mo. Measures of efficiency for this study were: dry matter intake efficiency (DMIE), defined as 305-d fat-corrected milk (FCM)/305-d DMI, net energy for lactation efficiency (NELE), defined as 305-d FCM/05-d NEL intake, and crude protein efficiency (CPE), defined as 305-d true protein yield/305-d CP intake. Residual feed intake (RFI) was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk (DIM). Data were analyzed with 3- and 4-trait animal models and included 305-d FCM or protein yield, DM, NEL, or CP intake, BW, BCS, BCS change between DIM 1 and 60, milk urea nitrogen, somatic cell score, RFI, or an alternative efficiency measure. Data were analyzed with and without significant covariates for BCS and BCS change between DIM 1 and 60. The average DMIE, NELE, and CPE were 1.61, 0.98, and 0.32, respectively. Heritability of gross feed efficiency was 0.14 for DMIE, 0.18 for NELE, and 0.21 for CPE, and heritability of RFI was 0.01. Body weight and BCS had high and negative correlations with the efficiency traits (−0.64 to −0.70), indicating that larger and fatter cows were less feed efficient than smaller and thinner cows. When BCS covariates were included in the model, cows identified as being highly efficient produced 2.3 kg/d less FCM in early lactation due to less early lactation loss of BCS. Results from this study suggest that selection for higher yield and lower BW will increase feed efficiency, and that body tissue mobilization should be considered.  相似文献   

10.
The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log2-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk loss in the average lactation affected with SCM was 155 kg of milk (2%) in primiparous cows and 445 kg of milk (5%) in multiparous cows. It was concluded that multiparous cows in late lactation can be expected to be responsible for the majority of the herd-level production loss caused by SCM, and that preventive measures need to focus on reducing the incidence of SCM in such cows.  相似文献   

11.
Autoregressive Moving Average (ARMA) models, originally developed in the contest of time series analysis, were used to predict Test Day (TD) yields of milk production traits in dairy cows. ARMA models areable to take into account both the average lactation curve of homogeneous groups of animals and the residual individual variability that may be explained in terms of probability models, such as Autoregressive (AR) and Moving Average (MA) processes. Milk, fat, and protein yields of 6000 Italian Simmental cows with 8 TD records per lactation were analyzed. Data were grouped according to parity (1st, 2nd, and 3rd calving) and fitted to a Box-Jenkins ARMA model in order to predict TD yields in five situations of incomplete lactations. Reasonable accuracies have been obtained for a limited horizon of prediction: average correlations among actual and predicted data were 0.85, 0.72, and 0.80 for milk, fat and protein yields when the first predicted TD was one step ahead (on average 42d) of the last actual record available. Cumulative 305-d yields were calculated using all actual (actual yields) or actual plus forecasted (estimated yields) daily yields. Accuracy of lactation predictions was remarkable even when only a few actual TD records were available, with values of 0.88 for milk and protein and 0.84 for fat for the correlations between actual and estimated yields when 6 out of 8 TD records were predicted. Accuracy rapidly increases with the number of actual TD available: correlations were about 0.96 for milk and protein and 0.93 for fat when 4 out of 8 TD records were predicted. In comparison with other prediction methods, ARMA modelsare very simple and can be easily implemented in data recording software, even at the farm level.  相似文献   

12.
Test-day (TD) models are used in most countries to perform national genetic evaluations for dairy cattle. The TD models estimate lactation curves and their changes as well as variation in populations. Although potentially useful, little attention has been given to the application of TD models for management purposes. The potential of the TD model for management use depends on its ability to describe within- or between-herd variation that can be linked to specific management practices. The aim of this study was to estimate variance components for milk yield, milk component yields, and somatic cell score (SCS) of dairy cows in the Ragusa and Vicenza areas of Italy, such that the most relevant sources of variation can be identified for the development of management parameters. The available data set contained 1,080,637 TD records of 42,817 cows in 471 herds. Variance components were estimated with a multilactation, random-regression, TD animal model by using the software adopted by NRS for the Dutch national genetic evaluation. The model comprised 5 fixed effects [region × parity × days in milk (DIM), parity × year of calving × season of calving × DIM, parity × age at calving × year of calving, parity × calving interval × stage of pregnancy, and year of test × calendar week of test] and random herd × test date, regressions for herd lactation curve (HCUR), the animal additive genetic effect, and the permanent environmental effect by using fourth-order Legendre polynomials. The HCUR variances for milk and protein yields were highest around the time of peak yield (DIM 50 to 150), whereas for fat yield the HCUR variance was relatively constant throughout first lactation and decreased following the peak around 40 to 90 DIM for lactations 2 and 3. For SCS, the HCUR variances were relatively small compared with the genetic, permanent environmental, and residual variances. For all the traits except SCS, the variance explained by random herd × test date was much smaller than the HCUR variance, which indicates that the development of management parameters should focus on between-herd parameters during peak lactation for milk and milk components. For SCS, the within-herd variance was greater than the between-herd variance, suggesting that the focus should be on management parameters explaining variances at the cow level. The present study showed clear evidence for the benefits of using a random regression TD model for management decisions.  相似文献   

13.
Multiple-trait random regression animal models with simultaneous and recursive links between phenotypes for milk yield and somatic cell score (SCS) on the same test day were fitted to Canadian Holstein data. All models included fixed herd test-day effects and fixed regressions within region-age at calving-season of calving classes, and animal additive genetic and permanent environmental regressions with random coefficients. Regressions were Legendre polynomials of order 4 on a scale from 5 to 305 d in milk (DIM). Bayesian methods via Gibbs sampling were used for the estimation of model parameters. Heterogeneity of structural coefficients was modeled across (the first 3 lactations) and within (4 DIM intervals) lactation. Model comparisons in terms of Bayes factors indicated the superiority of simultaneous models over the standard multiple-trait model and recursive parameterizations. A moderate heterogeneous (both across- and within-lactation) negative effect of SCS on milk yield (from −0.36 for 116 to 265 DIM in lactation 1 to −0.81 for 5 to 45 DIM in lactation 3) and a smaller positive reciprocal effect of SCS on milk yield (from 0.007 for 5 to 45 DIM in lactation 2 to 0.023 for 46 to 115 DIM in lactation 3) were estimated in the most plausible specification. No noticeable differences among models were detected for genetic and environmental variances and genetic parameters for the first 2 regression coefficients. The curves of genetic and permanent environmental variances, heritabilities, and genetic and phenotypic correlations between milk yield and SCS on a daily basis were different for different models. Rankings of bulls and cows for 305-d milk yield, average daily SCS, and milk lactation persistency remained the same among models. No apparent benefits are expected from fitting causal phenotypic relationships between milk yield and SCS on the same test day in the random regression test-day model for genetic evaluation purposes.  相似文献   

14.
Modeling extended lactations for the US Holsteins is useful because a majority (>55%) of the cows in the present population produce lactations longer than 305 d. In this study, 9 empirical and mechanistic models were compared for their suitability for modeling 305-d and 999-d lactations of US Holsteins. A pooled data set of 4,266,597 test-day yields from 427,657 (305-d complete) lactation records from the AIPL-USDA database was used for model fitting. The empirical models included Wood (WD), Wilmink (WIL), Rook (RK), monophasic (MONO), diphasic (DIPH), and lactation persistency (LPM) functions; Dijkstra (DJ), Pollott (POL), and new-multiphasic (MULT) models comprised the mechanistic counterparts. Each model was separately tested on 305-d (>280 days in milk) and 999-d (>800 days in milk) lactations for cows in first parity and those in third and greater parities. All models were found to produce a significant fit for all 4 scenarios (2 parity groups and 2 lactation lengths). However, the resulting parameter estimates for the 4 scenarios were different. All models except MONO, DIPH, and LPM yielded residuals with absolute values smaller than 2 kg for the entire period of the 305-d lactations. For the extended lactations, the prediction errors were larger. However, the RK, DJ, POL, and MULT models were able to predict daily yield within a ± 3 kg range for the entire 999-d period. The POL and MULT models (having 6 and 12 parameters, respectively) produced the lowest mean square error and Bayesian information criteria values, although the differences from the other models were small. Conversely, POL and MULT were often associated with poor convergence and highly correlated, unreliable, or biologically atypical parameter estimates. Considering the computational problems of large mechanistic models and the relative predictive ability of the other models, smaller models such as RK, DJ, and WD were recommended as sufficient for modeling extended lactations unless mechanistic details on the extended curves are needed. The recommended models were also satisfactory in describing fat and protein yields of 305-d and 999-d lactations of all parities.  相似文献   

15.
Multiple lines of inquiry have suggested that a high degree of inflammation in early lactation cows is associated with low productivity and increased disease incidence. In addition, some small studies have suggested that milk production increases in response to antiinflammatory treatment in the first week of lactation. Our objective was to determine if administration of sodium salicylate (SS), a nonsteroidal antiinflammatory drug (NSAID), in the first week of lactation changes whole-lactation productivity and retention in the herd. At calving, 78 cows [n = 39 primiparous (1P); n = 24 second parity (2P); n = 15 third parity or greater (3P)] were alternately assigned to either control (CON) or SS treatments for 7 d postpartum. Sodium salicylate treatment was administered via individual water bowls at a concentration of 1.95 g/L, delivering a mean of 123.3 ± 5.5 g of salicylate/d during the 7-d treatment. For the first 21 d of lactation, dry matter intake, water intake, milk yield, and health were monitored daily, and milk samples were collected twice weekly for milk component analysis. Monthly milk yield and component testing through the rest of the lactation provided data to assess long-term responses, and the effects of treatment on the risk of leaving the herd and on 305-d milk, fat, and protein yields were assessed. During the first 21 d of lactation, we observed no differences in morbidity, except for increased risk of metritis in 3P SS cows. Treatment interacted with parity to influence both 305-d milk and milk fat yields, and a tendency for an interaction was detected for 305-d milk protein yield. Milk yield was 2,469 ± 646 kg greater over the lactation in 3P SS cows compared with 3P CON cows (21% increase) and tended to decrease by 8% in 1P cows treated with SS; no effects were detected in 2P cows. Furthermore, 3P SS cows produced 130 ± 23 kg more milk fat over the lactation (30% increase), with no effects detected for 1P or 2P. Treatment with SS tended to increase 305-d milk protein yield in 3P cows by 14%, with no effects in 1P or 2P cows. A tendency for a treatment × parity interaction was also observed for the risk of leaving the herd. First-parity cows treated with SS tended to have greater risk of leaving the herd than controls (30 vs. 6% risk); however, treatment did not alter herd retention in 2P or 3P groups, and SS had no effect on the risk of leaving the herd overall. Results indicate that SS has long-term effects on lactation of mature dairy cows, particularly on fat yield, but may have negative effects for primiparous cows.  相似文献   

16.
The objective of this observational study was to describe and compare the dynamics of reason-specific culling risk for the genetic groups Jerseys (JE), Holsteins (HO), and Jersey × Holstein crossbreds (JH), considering parity, stage of lactation, and milk yield, among other variables, in large multibreed dairy herds in Texas. The secondary objective was to analyze the association between survival and management factors, such as breeding and replacement policies, type of facilities, and use of cooling systems. After edits, available data included 202,384 lactations in 16 herds, ranging from 407 to 8,773 cows calving per year during the study period from 2007 to 2011. The distribution of lactation records by genetic group was 58, 36, and 6% for HO, JE, and JH crosses, respectively. Overall culling rates across breeds were 30.1, 32.1, and 35.0% for JH, JE, and HO, respectively. The dynamics of reason-specific culling were dependent on genetic group, parity, stage of lactation, milk yield, and herd characteristics. Early lactation was a critical period for “died” and “injury-sick” culling. The risk increased with days after calving for “breeding” and, in the case of HO, “low production” culling. Open cows had a 3.5 to 4.6 times greater risk for overall culling compared with pregnant cows. The odds of culling with reason “died” within the first 60 d in milk (DIM) were not significantly associated with genetic group. However, both JE and JH crosses had lower odds of live culling within the first 60 DIM compared with HO cows (OR = 0.72 and 0.82, respectively). Other cow variables significantly associated with the risk of dying within the first 60 DIM were cow relative 305-d mature equivalent (305ME) milk yield, parity, and season of calving. Significant herd-related variables for death included herd size and origin of replacements. In addition to genetic group, the risk of live culling within 60 DIM was associated with cow-relative 305ME milk yield, parity, and season of calving. Significant herd-related variables for live culling included herd-relative 305ME milk yield, herd size, type of facility, origin of replacement, and type of maternity. Overall, reason-specific culling followed similar patterns across DIM in the 3 genetic groups.  相似文献   

17.
The accuracy and precision of 3 lactation models was estimated by summarizing means and variability in projection error for next-test milk and actual 305-d milk yield (M305) for 50-d intervals in a large Dairy Herd Improvement Association data set. Lactations were grouped by breed (Holstein, Jersey, and crossbred) and parity (first vs. later). A smaller, single-herd data set with both Dairy Herd Improvement Association data and daily milk weights was used to compare M305 calculated from test-day data with M305 computed by summing daily milk weights. The lactation models tested were best prediction (BP), the nonlinear MilkBot (MB) model, and a null model (NM) based on a stepwise function. The accuracy of the models was ranked (best to worst) MB, BP, and NM for later-parity cows and MB, NM, and BP for first-parity cows, with MB achieving accuracy in projecting daily milk of 0.5 kg or better in most groups. The models generally showed better accuracy after 50 d in milk. Best prediction and NM had low accuracy for crossbred cows and first-parity Holstein and Jersey cows. The MB model appears to be more precise than BP, and NM had low precision, especially for M305. Regression of model-generated M305 on summed M305 showed BP and MB to be equally efficient in ranking lactations, but MB was better at quantifying differences.  相似文献   

18.
An investigation of the shape of the lactation curve and the mastitis incidence was conducted to identify whether management interventions of the lactation curve constitute a potential for reducing incidence of mastitis at herd level. Lactation curves were estimated to describe the variation of daily milk yield during the 305-d lactation period in Norwegian Red cows. Associations between mastitis incidence at herd level and lactation curve characteristics such as production level at onset of lactation, magnitude and time of peak milk yield, and increase and decrease of milk yield rates were studied. Data from 250,303 lactations occurring during 2005 and 2006 from 14,766 herds were obtained from the Norwegian Dairy Herd Recording System. Besides veterinary treatments, the records included information on monthly test-day milk yields. The shapes of the lactation curves at herd level were parameterized using a modified Wilmink model in two separate mixed model analyses. In the first analysis a subset of lactations with no records of veterinary treatments was used. Lactation curves from herds with high (>0·31 cases/305-d lactation) and low (<0·07 cases/305-d lactation) herd mastitis incidence rate were parameterized and compared for three separate strata of parity. The result showed that high herd mastitis incidence rate was associated with a low intercept (P<0·05), a steep slope before peak milk yield (P<0·01) and a rapid decline after peak milk yield (P<0·01). In the second analysis a subset of high-yielding lactations with veterinary treatments of mastitis only and lactations with no records of veterinary treatment were compared. This was done to investigate whether the findings at herd level were also reflected at cow level. These results showed that lactation curves from lactations with mastitis cases were associated with a steep slope before peak milk yield (P<0·05) in second and later parities and a rapid decline after peak milk yield (P<0·01) in all three parity groups.  相似文献   

19.
Our objective was to develop predictive models of 305-d mature-equivalent milk, fat, and protein yields in the subsequent lactation as continuous functions of the number of days dry (DD) in the current lactation. In this retrospective cohort study with field data, we obtained DHIA milk recording lactation records with the last DD in 2014 or 2015. Cows included had DD from 21 to 100 d. After editing, 1,030,141 records from cows in 7,044 herds remained. Three parity groups of adjacent (current, subsequent) lactations were constructed. We conducted all analyses by parity group and yield component. We first applied control models to pre-adjust the yields in the subsequent lactation for potentially confounding effects. Control models included the covariates mature-equivalent yield, days open, somatic cell score at 180 d pregnant, daily yield at 180 d pregnant, and a herd-season random effect, all observed in the current lactation. Days dry was not included. Second, we modeled residuals from control models with smooth piecewise regression models consisting of a simple linear, quadratic, and another simple linear equation depending on DD. Yield deviations were calculated as differences from predicted mature-equivalent yield at 50 DD. For validation, predictions of yield deviations from piecewise models by DD were compared with predictions from local regression for the DHIA field records and yield deviations reported in 38 experimental and field studies found in the literature. Control models reduced the average root mean squared prediction error by approximately 21%. Yield deviations were increasingly more negative for DD shorter than 50 d, indicating lower yields in the subsequent lactation. For short DD, the decrease in 305-d mature-equivalent milk yield ranged from 43 to 53 kg per DD. For mature-equivalent fat and protein yields, decreases were between 1.28 and 1.71 kg per DD, and 1.06 and 1.50 kg per DD, respectively. Yield deviations often were marginally positive and increasing for DD >50, so that the highest yield in the subsequent lactation was predicted for 100 DD. For long DD, the 305-d mature-equivalent milk yield increased at most 4.18 kg per DD. Patterns in deviations for fat and protein yield were similar to those for milk yield deviations. Predictions from piecewise models and local regressions were very similar, which supports the chosen functional form of the piecewise models. Yield deviations from field studies in the literature typically were decreasing when DD were longer, likely because of insufficient control for confounding effects. In conclusion, piecewise models of mature-equivalent milk, fat, and protein yield deviations as continuous functions of DD fit the observed data well and may be useful for decision support on the optimal dry period length for individual cows.  相似文献   

20.
《Journal of dairy science》1988,71(12):3425-3436
Prediction equations were determined to estimate daily milk yield from 306 to 395 d in milk for forecasting herd milk sales from Holstein cows in lactation >305 d. Data were test day milk weights for 65,322 primiparous and 119,220 pluriparous lactations of > 305 d from the Southern US. A forecast model was developed using same lactation 305 d milk yield (in classes of 500 kg increments) that gave similar predicted daily yields as models utilizing last sample milk weight information. This model has the advantage of early forecasting of later milk using projected 305-d yields.Reduced forecast models ignoring days pregnant, yield class, or both accounted for 95, 68, and 59%, and 91, 67, and 56% as much variation in daily milk as the full model for the primiparous and pluriparous cows. Percentage of 305-d milk yielded in mo 11, 12, and 13, depending on 305-d yield class, ranged from 7.1 to 7.0%, 6.2 to 6.0%, and 5.4 to 5.0%, and 5.4 to 5.0%, 4.3 to 3.9%, and 3.3 to 3.0% for first parity and pluriparous cows calving in winter and 125 d open. Cows not calving in winter or with more than 125 d open yielded more milk in extended lactation. These percentages are larger than generally assumed in studies of days open, thus indicating that cost of days open may have been overestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号