共查询到20条相似文献,搜索用时 15 毫秒
1.
Tyburczy C Lock AL Dwyer DA Destaillats F Mouloungui Z Candy L Bauman DE 《Journal of dairy science》2008,91(10):3850-3861
Trans fatty acids (FA) arise in ruminant-derived foods as a consequence of rumen biohydrogenation and are of interest because of their biological effects and potential role in chronic human diseases. Our objective was to compare 2 trans FA, elaidic acid (EA; trans-9 18:1) and vaccenic acid (VA; trans-11 18:1), with oleic acid (OA; cis-9 18:1) relative to plasma lipid transport and mammary utilization for milk fat synthesis. Three ruminally cannulated, Holstein dairy cows, 259 ± 6 DIM (mean ± SEM), were randomly assigned in a 3 × 3 Latin square design. Treatments were a 4-d abomasal infusion of 1) OA (45.5 g/d), 2) EA (41.7 g/d), and 3) VA (41.4 g/d). Milk samples were collected at each milking and blood samples were collected at the start and end of each treatment period. The proportions of total plasma FA associated with each plasma lipid fraction at baseline (pretreatment) were 62.6 ± 0.6% phospholipids, 26.1 ± 0.6% cholesterol esters, 9.8 ± 0.4% triglycerides, and 1.5 ± 0.1% nonesterified fatty acids; these values were unaffected by treatment. There were striking differences in the FA composition of the individual plasma lipid fractions and in the distribution of specific 18-carbon FA among the lipid fractions. Infusion of treatment isomers caused their specific increase in the various plasma lipid fractions but had no effect on milk production variables, including milk fat yield and content. Transfer efficiency of infused OA, EA, and VA to milk fat averaged 65.5 ± 3.0%, 59.7 ± 1.5%, and 54.3 ± 0.6%, respectively. For the VA infusion, 24.6 ± 1.1% of the transfer was accounted for by the increased yield of cis-9, trans-11 conjugated linoleic acid in milk fat, consistent with its endogenous synthesis from VA via the mammary enzyme Δ9-desaturase. Notably, linoleic acid (18:2n-6) and linolenic acid (18:3n-3) accounted for 47.7% of total plasma FA, but only 2.6% of FA in milk. Overall, results demonstrate clear differences in plasma transport and mammary uptake and utilization of 18-carbon FA, and these relate to the location, orientation, and number of double bonds. 相似文献
2.
Perfield JW Lock AL Griinari JM Saebø A Delmonte P Dwyer DA Bauman DE 《Journal of dairy science》2007,90(5):2211-2218
Under certain dietary situations, rumen biohydrogenation results in the production of unique fatty acids that inhibit milk fat synthesis. The first of these to be identified was trans-10, cis-12 conjugated linoleic acid (CLA), but others are postulated to contribute to diet-induced milk fat depression (MFD). Our objective was to examine the potential role of trans-9, cis-11 CLA in the regulation of milk fat. In a preliminary study, we used gas-liquid and high-performance liquid chromatography techniques to examine milk fat samples from a diet-induced MFD study and found that an increase in trans-9, cis-11 CLA corresponded to the decrease in milk fat yield. We investigated this further using a CLA enrichment of 9, 11 isomers to examine the biological effect of trans-9, cis-11 CLA on milk fat synthesis. Four rumen-fistulated Holstein cows were randomly assigned in a 4 × 4 Latin square experiment involving 5-d treatment periods and abomasal infusion of 1) ethanol (control), 2) a 9, 11 CLA mix (containing 32% trans-9, cis-11, 29% cis-9, trans-11, and 17% trans-9, trans-11), 3) a trans-9, trans-11 CLA supplement, and 4) a trans-10, cis-12 CLA supplement (positive control). The trans-9, trans-11 CLA and trans-10, cis-12 CLA supplements were of high purity (>90%), and all supplements were infused at a rate to provide 5 g/d of the CLA isomer of interest. Milk yield and dry matter intake did not differ among treatments. Compared with the control treatment, milk fat yield was reduced by 15% for the 9, 11 CLA mixture and by 27% for the trans-10, cis-12 CLA treatment. We also found that trans-9, trans-11 CLA had no effect on milk fat yield, and previous research has shown that milk fat yield is unaltered when cows are infused with cis-9, trans-11 CLA. When all treatments were considered, results suggested that trans-9, cis-11 was the CLA isomer in the 9, 11 CLA mix responsible for the reduction in milk fat synthesis, although the magnitude was less than that observed for trans-10, cis-12 CLA. Interestingly, trans-9, trans-11 CLA altered the milk fat desaturase index, further demonstrating that alterations in desaturase can occur independently of effects on milk fat synthesis. Overall, our investigations identified that an increase in milk fat content of trans-9, cis-11 CLA was associated with diet-induced MFD and provided evidence of a role for this isomer in MFD based on the 15% reduction in milk fat yield with abomasal infusion of a CLA enrichment that supplied 5 g/d of trans-9, cis-11 CLA. 相似文献
3.
During biohydrogenation-induced milk fat depression (MFD), nutrients are spared from milk fat synthesis and are available for other metabolic uses. Acetate is the major carbon source spared and it may increase lipid synthesis in adipose tissue during MFD. The objective of this study was to compare the effect of trans-10,cis-12 conjugated linoleic acid (CLA) and the amount of acetate spared during CLA-induced MFD on adipose tissue lipogenesis. Nine multiparous, lactating, ruminally cannulated Holstein cows (244 ± 107 d in milk; 25 ± 8.4 kg of milk/d; mean ± standard deviation) were randomly assigned to treatments in a 3 × 3 Latin square design. Experimental periods were 4 d followed by a 10-d washout. Treatments were control (CON), ruminal infusion of acetate (AC; continuous infusion of 7 mol/d adjusted to pH 6.1 with sodium hydroxide), or abomasal infusion of CLA (10 g/d of both trans-10,cis-12 CLA and cis-9,trans-11 CLA). Dry matter intake, milk yield, and milk protein yield and percentage were not affected by treatments. Compared with CON, milk fat yield decreased 23% and fat percent decreased 28% in CLA, and milk fat yield increased 20% in AC. Concentration and yield of milk de novo synthesized fatty acids (<C16) were reduced and concentration of preformed fatty acids (>C16) was increased by CLA, compared with CON. Yield of de novo synthesized fatty acids and palmitic acid was increased by AC, compared with CON. Lipogenesis capacity of adipose tissue explants was decreased 72% by CLA, but was not affected by AC. Acetate oxidation by adipose explants was not affected by treatments. Treatments had no effect on expression of key lipogenic factors, lipogenic enzymes, and leptin; however, expression of fatty acid binding protein 4 was reduced in CLA compared with CON. Additionally, hormone-sensitive lipase and perilipin 1 were decreased by CLA and acetate. Plasma glucose and glucagon concentrations were not affected by treatments; however, CLA increased nonesterified fatty acids 17.7%, β-hydroxybutyrate 16.1%, and insulin 27.8% compared with CON, and AC increased plasma β-hydroxybutyrate 18%. In conclusion, during CLA-induced MFD in low-producing cow adipose tissue was sensitive to the anti-lipogenic effects of CLA, while spared acetate did not stimulate adipose lipogenesis. However, acetate may play an important role in stimulating lipogenesis and improving energy status in the mammary gland under normal conditions. 相似文献
4.
The efficacy of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well documented in dairy cows, but studies with other ruminant species are less convincing, and there have been no investigations of this in sheep. Therefore, the current study was designed to determine whether trans-10, cis-12 CLA would inhibit milk fat synthesis in sheep. Twenty multiparous ewes in early lactation were paired and randomly allocated to 2 treatments: grass hay plus concentrate either unsupplemented (control) or supplemented with lipid-encapsulated CLA to provide 2.4 g/d of trans-10, cis-12 CLA. The CLA dose was based on published responses of dairy cows extrapolated to ewes on a metabolic body weight basis. The experimental design was a 2-period crossover with 10-d treatment periods separated by a 10-d interval. Compared with the control, CLA supplementation reduced milk fat content from 6.4 to 4.9% and reduced fat yield from 95 to 80 g/d. The CLA treatment also increased milk yield from 1,471 to 1,611 g/d and increased protein yield from 68 to 73 g/d. Milk protein content and DMI were unaffected by treatment. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was < 0.01 and 0.12 g/100 g of fatty acids for the control and CLA treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the dietary supplement into milk fat was 3.8%. Results of the present study demonstrate that a CLA supplement containing trans-10, cis-12 CLA reduces milk fat synthesis in lactating sheep in a manner similar to dairy cows when fed at an equivalent dose (metabolic body weight basis). Furthermore, the nutrients spared by the reduction in milk fat coincided with an increase in milk and milk protein yield. 相似文献
5.
Mackle TR Kay JK Auldist MJ McGibbon AK Philpott BA Baumgard LH Bauman DE 《Journal of dairy science》2003,86(2):644-652
The aim of this study was to investigate the effects of conjugated linoleic acid supplementation on the synthesis of milk fat in pasture-fed Friesian cows. In four cows, a commercial mixture containing 62.3% (wt/vol) conjugated linoleic acid was infused intraabomasally to avoid rumen fermentation and biohydrogenation. The design was a 4 x 4 Latin square in which each cow received infusions of 0, 20, 40, and 80 g/d of conjugated linoleic acid mixture for 4 d. Cows were fed freshly cut ryegrass/white clover pasture ad libitum. Milk fat concentration was decreased by 36, 43, and 62% and milk fat yield was decreased by 32, 36, and 60% by the 20, 40, and 80 g of conjugated linoleic acid/d treatments. Dry matter intake, milk protein concentration, and protein yield were unaffected by treatments; however, milk yield was increased by 11% during the 40-g conjugated linoleic acid/d treatment. The effects of conjugated linoleic acid infusion were most pronounced in reducing de novo fatty acid synthesis and desaturation. Results show that the inhibitory effect of this conjugated linoleic acid mixture on milk fat synthesis occurs in pasture-fed cows, and demonstrate the potential to dramatically alter gross milk composition. This technology could offer a management tool to manipulate milk composition and energy demands of pasture-fed cows. 相似文献
6.
The effect of conjugated linoleic acid (CLA) supplements containing trans-10, cis-12 for reducing milk fat synthesis has been well described in dairy cows and sheep. Studies on lactating goats, however, remain inconclusive. Therefore, the current study investigated the efficacy of a lipid-encapsulated trans-10, cis-12 CLA supplement (LE-CLA) on milk production and milk fatty acid profile in dairy goats. Thirty multiparous Alpine lactating goats in late lactation were used in a 3 × 3 Latin square design (14-d treatment periods separated by 14-d intervals). Does were fed a total mixed ration of Bermuda grass hay, dehydrated alfalfa pellets, and concentrate. Does were randomly allocated to 3 treatments: A) unsupplemented (control), B) supplemented with 30 g/d of LE-CLA (low dose; CLA-1), and C) supplemented with 60 g/d of LE-CLA (high dose; CLA-2). Milk yield, dry matter intake, and milk protein content and yield were unaffected by treatment. Compared with the control, milk fat yield was reduced 8% by the CLA-1 treatment and 21% by the CLA-2 treatment, with milk fat content reduced 5 and 18% by the CLA-1 and CLA-2 treatments, respectively. The reduction in milk fat yield was due to decreases in both de novo fatty acid synthesis and uptake of preformed fatty acids. Milk fat content of trans-10, cis-12 CLA was 0.03, 0.09, and 0.19 g/100 g of fatty acids for the control, CLA-1, and CLA-2 treatments, respectively. The transfer efficiency of trans-10, cis-12 CLA from the 2 levels of CLA supplement into milk fat was not different between treatments and averaged 1.85%. In conclusion, trans-10, cis-12 CLA reduced milk fat synthesis in lactating dairy goats in a manner similar to that observed for lactating dairy cows and dairy sheep. Dose-response comparisons, however, suggest that the degree of reduction in milk fat synthesis is less in dairy goats compared with dairy cows and dairy sheep. 相似文献
7.
Piperova LS Moallem U Teter BB Sampugna J Yurawecz MP Morehouse KM Luchini D Erdman RA 《Journal of dairy science》2004,87(11):3836-3844
Milk fat was investigated in lactating dairy cows fed diets supplemented with Ca salts of trans fatty acids (Ca-tFA) or Ca salts of conjugated linoleic acids (Ca-CLA). Forty-five Holstein cows (115 days in milk) were fed a control diet (51% forage; dry matter basis) supplemented with 400 g of EnerG II (Ca salts of palm oil fatty acids) for 2 wk; subsequently, 5 groups of 9 cows each were assigned for 4 wk to the control diet or diets containing 100 g of Ca-CLA or 100, 200, or 400 g of Ca-tFA in a randomized block design. Treatments had no effect on dry matter intake, milk production, protein, lactose, or somatic cell count. Milk fat percentage was reduced from 3.39% in controls to 3.30, 3.04, and 2.98%, respectively, by the Ca-tFA diets and to 2.54% by the Ca-CLA diet. Milk fat yield (1.24 kg/d in controls) was decreased by 60, 130, and 190 g/d with increasing dose of Ca-tFA and by 290 g/d with the Ca-CLA supplement. Consistent with increased endogenous synthesis of cis-9-containing CLA from precursors provided by the Ca-tFA diets, total CLA were similar in milk of cows fed Ca-CLA or Ca-tFA. Compared with controls, the Ca-CLA diet increased trans-10, cis-12-18:2 yield in milk, without altering levels of trans-18:1 isomers. In contrast, yields of most trans-18:1 isomers were elevated in milk of cows fed Ca-tFA diets, whereas yields of trans-10, cis-12-18:2 remained similar to control values. We conclude that milk fat depression can occur without an increase in trans-10, cis-12-18:2 in milk and that other components, perhaps the trans-10-18:1 isomer, may be involved. 相似文献
8.
trans-10, cis-12 conjugated linoleic acid decreases lipogenic rates and expression of genes involved in milk lipid synthesis in dairy cows 总被引:11,自引:0,他引:11
Baumgard LH Matitashvili E Corl BA Dwyer DA Bauman DE 《Journal of dairy science》2002,85(9):2155-2163
Feeding conjugated linoleic acid (CLA) reduces milk fat synthesis in lactating dairy cows, and the effect has been shown to be specific for the trans-10, cis-12 CLA isomer. Our objectives were to examine potential mechanisms by which trans-10, cis-12 CLA inhibits milk fat synthesis. Multiparous Holstein cows (n = 4) in late lactation were used in a balanced 2 x 2 crossover design. Treatments consisted of a 5 d abomasal infusion of either skim milk (control) or purified trans-10, cis-12 CLA (13.6 g/d) emulsified in skim milk. On d 5 of infusion, mammary gland biopsies were performed and a portion of the tissue analyzed for mRNA expression of acetyl CoA carboxylase, fatty acid synthetase, delta 9-desaturase, lipoprotein lipase, fatty acid binding protein, glycerol phosphate acyltransferase and acylglycerol phosphate acyltransferase. Lipogenic capacity was evaluated with another portion of the tissue. Infusion of trans-10, cis-12 CLA decreased milk fat content and yield 42 and 48%, respectively and increased the trans-10, cis-12 CLA content in milk fat from < 0.1 to 4.9 mg/g. Reductions in milk fat content of C4 to C16 fatty acids contributed 63% to the total decrease in milk fat yield (molar basis). Analysis of the ratios of specific fatty acid pairs indicated trans-10, cis-12 CLA also shifted fatty acid composition in a manner consistent with a reduction in delta 9-desaturase. Mammary explant incubations with radiolabeled acetate established that lipogenic capacity was decreased 82% and acetate oxidation to CO2 was reduced 61% when cows received trans-10, cis-12 CLA. Infusing trans-10, cis-12 CLA also decreased the mRNA expression of all measured enzymes by 39 to 54%. Overall, data demonstrated the mechanism by which trans-10, cis-12 CLA inhibits milk fat synthesis includes decreasing expression of genes that encode for enzyme involved in circulating fatty acid uptake and transport, de novo fatty acid synthesis, desaturation of fatty acids and triglyceride synthesis. 相似文献
9.
Halmemies-Beauchet-Filleau A Kokkonen T Lampi AM Toivonen V Shingfield KJ Vanhatalo A 《Journal of dairy science》2011,94(9):4413-4430
Five multiparous Finnish Ayrshire cows fed red clover silage-based diets were used in a 5 × 5 Latin square with 21-d experimental periods to evaluate the effects of various plant oils or camelina expeller on animal performance and milk fatty acid composition. Treatments consisted of 5 concentrate supplements containing no additional lipid (control), or 29 g/kg of lipid from rapeseed oil (RO), sunflower-seed oil (SFO), camelina-seed oil (CO), or camelina expeller (CE). Cows were offered red clover silage ad libitum and 12 kg/d of experimental concentrates. Treatments had no effect on silage or total dry matter intake, whole-tract digestibility coefficients, milk yield, or milk composition. Plant oils in the diet decreased short- and medium-chain saturated fatty acid (6:0-16:0) concentrations, including odd- and branched-chain fatty acids and enhanced milk fat 18:0 and 18-carbon unsaturated fatty acid content. Increases in the relative proportions of cis 18:1, trans 18:1, nonconjugated 18:2, conjugated linoleic acid (CLA), and polyunsaturated fatty acids in milk fat were dependent on the fatty acid composition of oils in the diet. Rapeseed oil in the diet was associated with the enrichment of trans 18:1 (Δ4, 6, 7, 8, and 9), cis-9 18:1, and trans-7,cis-9 CLA, SFO resulted in the highest concentrations of trans-5, trans-10, and trans-11 18:1, Δ9,11 CLA, Δ10,12 CLA, and 18:2n-6, whereas CO enhanced trans-13-16 18:1, Δ11,15 18:2, Δ12,15 18:2, cis-9,trans-13 18:2, Δ11,13 CLA, Δ12,14 CLA, Δ13,15 CLA, Δ9,11,15 18:3, and 18:3n-3. Relative to CO, CE resulted in lower 18:0 and cis-9 18:1 concentrations and higher proportions of trans-10 18:1, trans-11 18:1, cis-9,trans-11 CLA, cis-9,trans-13 18:2, and trans-11,cis-15 18:2. Comparison of milk fat composition responses to CO and CE suggest that the biohydrogenation of unsaturated 18-carbon fatty acids to 18:0 in the rumen was less complete for camelina lipid supplied as an expeller than as free oil. In conclusion, moderate amounts of plant oils in diets based on red clover silage had no adverse effects on silage dry matter intake, nutrient digestion, or milk production, but altered milk fat composition, with changes characterized as a decrease in saturated fatty acids, an increase in trans fatty acids, and enrichment of specific unsaturated fatty acids depending on the fatty acid composition of lipid supplements. 相似文献
10.
Trans-10, cis-12 conjugated linoleic acid (CLA) is a potent inhibitor of milk fat synthesis, and the magnitude of milk fat depression is often correlated with the fat content of this isomer. However, the trans-10, cis-12 CLA content does not always correspond to the extent of milk fat depression, and in some instances, an increase in the milk fat content of trans-10, trans-12 CLA has been observed. We synthesized trans-10, trans-12 CLA (>90% purity) and investigated its effect on milk fat synthesis and incorporation into plasma lipids. Three rumen-fistulated Holstein cows were randomly assigned in a 3 × 3 Latin square experiment. Treatments were a 4-d abomasal infusion of 1) ethanol (control), 2) a trans-10, cis-12 CLA supplement (positive control), and 3) a trans-10, trans-12 CLA supplement; 5 g/d of the CLA isomer of interest was provided. Milk yield, dry matter intake, and milk protein were unaffected by treatment. Treatment with trans-10, trans-12 CLA had no effect on milk fat yield, whereas treatment with trans-10, cis-12 CLA reduced milk fat yield by 28%. Incorporation of CLA was greatest for the plasma triglyceride fraction, and the milk fat content was subsequently elevated within the respective treatment groups. The milk fatty acid composition indicated that Δ9-desaturase was reduced significantly for both CLA treatments, but the reduction was greater for the treatment with trans-10, trans-12 CLA. Overall, abomasal infusion of trans-10, trans-12 CLA and trans-10, cis-12 CLA altered the desaturase ratios, but only trans-10, cis-12 CLA reduced milk fat synthesis. 相似文献
11.
Effect of dose of calcium salts of conjugated linoleic acid (CLA) on percentage and fatty acid content of milk fat in midlactation holstein cows 总被引:2,自引:0,他引:2
Increasing conjugated linoleic acid (CLA) content of milk fat from lactating dairy cattle has become a research interest due to the possible health benefits afforded humans consuming CLA. Dietary supplementation of CLA to lactating dairy cows is one potential method by which CLA content of milk and dairy products may be enhanced. Feeding CLA in calcium salt form could potentially deliver CLA to the lower digestive tract through prevention of biohydrogenation by rumen microbes. Milk fat depression (MFD) occurs when cows receive CLA-60, a commercially available CLA source containing numerous CLA isomers, abomasally. Our objectives were to determine the quantity of CLA as calcium salts required to elicit maximal MFD and to evaluate the effects of CLA supplementation on fatty acid composition of milk fat. Five Holstein cows at approximately 93 DIM were utilized in a 5 x 5 balanced Latin square crossover design. Periods were 14-d in length with a 5-d treatment phase and 9-d rest phase. Treatments were 5-d supplementation of 0, 12.5, 25, 50, and 100 g of CLA-60 in calcium salt form. Milk samples were collected on d 5 of CLA supplementation and analyzed for composition and fatty acid profile. Regression analysis of milk fat data suggested that MFD was not maximized over the dose levels investigated, despite delivery of 34.5 g of trans-10, cis-12 CLA in the 100-g dose of CLA. Supplementation with 50 and 100 g of CLA per day resulted in a reduction of milk fat percent of 29 and 34%, respectively. Trend analysis indicated a linear decrease in the milk fat content of caprylic, capric, and lauric acids as the dose of CLA increased. Milk fat content of cis-9, trans-11, and trans-10, cis-12 CLA increased at an increasing rate as dose increased. 相似文献
12.
Survey of the fatty acid composition of retail milk in the United States including regional and seasonal variations 总被引:1,自引:0,他引:1
Consumers are increasingly aware that food components have the potential to influence human health maintenance and disease prevention, and dietary fatty acids (FA) have been of special interest. It has been 25 years since the last survey of US milk FA composition, and during this interval substantial changes in dairy rations have occurred, including increased use of total mixed rations and byproduct feeds as well as the routine use of lipid and FA supplements. Furthermore, analytical procedures have improved allowing greater detail in the routine analysis of FA, especially trans FA. Our objective was to survey US milk fat and determine its FA composition. We obtained samples of fluid milk from 56 milk processing plants across the US every 3 mo for one year to capture seasonal and geographical variations. Processing plants were selected based on the criteria that they represented 50% or more of the fluid milk produced in that area. An overall summary of the milk fat analysis indicated that saturated fatty acids comprised 63.7% of total milk FA with palmitic and stearic acids representing the majority (44.1 and 18.3% of total saturated fatty acids, respectively). Unsaturated fatty acids were 33.2% of total milk FA with oleic acid predominating (71.0% of total unsaturated fatty acids). These values are comparable to those of the previous survey in 1984, considering differences in analytical techniques. Trans FA represented 3.2% of total FA, with vaccenic acid being the major trans isomer (46.5% of total trans FA). Cis-9, trans-11 18:2 conjugated linoleic acid represented 0.55% total milk FA, and the major n-3 FA (linolenic acid, 18:3) composed 0.38%. Analyses for seasonal and regional effects indicated statistical differences for some FA, but these were minor from an overall human nutrition perspective as the FA profile for all samples were numerically similar. Overall, the present study provides a valuable database for current FA composition of US fluid milk, and results demonstrate that the milk fatty acid profile is remarkably consistent across geographic regions and seasons from the perspective of human dietary intake of milk fat. 相似文献
13.
J.E. Freitas C.S. Takiya T.A. Del Valle R.V. Barletta B.C. Venturelli T.H.A. Vendramini R.D. Mingoti G.D. Calomeni R. Gardinal J.R. Gandra V.P. Bettero E. Ferreira de Jesus M.D.S. Oliveira F.P. Rennó 《Journal of dairy science》2018,101(9):7881-7891
Ruminants have a unique metabolism and digestion of unsaturated fatty acids (UFA). Unlike monogastric animals, the fatty acid (FA) profile ingested by ruminants is not the same as that reaching the small intestine. The objective of this study was to evaluate whole raw soybeans (WS) in diets as a replacer for calcium salts of fatty acids (CSFA) in terms of UFA profile in the abomasal digesta of early- to mid-lactation cows. Eight Holstein cows (80 ± 20 d in milk, 22.9 ± 0.69 kg/d of milk yield, and 580 ± 20 kg of body weight; mean ± standard deviation) with ruminal and abomasal cannulas were used in a 4 × 4 Latin square experiment with 22-d periods. The experiment evaluated different fat sources rich in linoleic acid on ruminal kinetics, ruminal fermentation, FA abomasal flow, and milk FA profile of cows assigned to treatment sequences containing a control (CON), with no fat source; soybean oil, added at 2.68% of diet dry matter (DM); WS, addition of WS at 14.3% of diet DM; and CSFA, addition of CSFA at 2.68% of diet DM. Dietary fat supplementation had no effect on nutrient intake and digestibility, with the exception of ether extract. Cows fed fat sources tended to have lower milk fat concentration than those fed CON. In general, diets containing fat sources tended to decrease ruminal neutral detergent fiber digestibility in relation to CON. Cows fed WS had lower ruminal digestibility of DM and higher abomasal flow of DM in comparison to cows fed CSFA. As expected, diets containing fat supplements increased FA abomasal flow of C18:0 and total FA. Cows fed WS tended to present a higher concentration of UFA in milk when compared with those fed CSFA. This study suggests that under some circumstances, abomasal flow of UFA in early lactation cows can be increased by supplementing their diet with fat supplements rich in linoleic acid, regardless of rumen protection, with small effects on ruminal DM digestibility. 相似文献
14.
It has been previously established that trans-10, cis-12 conjugated linoleic acid plays an important role in milk fat depression (MFD). However, in many situations of dietary induced MFD, the reduction in milk fat synthesis is much greater than what would be predicted based on the milk fat concentration of trans-10, cis-12 18:2. These observations suggest that other biohydrogenation intermediates could be implicated in MFD. The objective of this study was to evaluate the effects on milk fat synthesis of an intravenous administration of 2 conjugated diene 18:3 isomers (cis-9, trans-11, cis-15 and cis-9, trans-13, cis-15 18:3), which are intermediates in ruminal biohydrogenation of α-linolenic acid. Three multiparous Holstein dairy cows (days in milk = 189 ± 37 d; body weight = 640 ± 69 kg; mean ± standard deviation), fitted with indwelling jugular catheters, were randomly assigned to a 3 × 3 Latin square design. For the first 5 d of each period, cows were infused intravenously with a 15% lipid emulsion providing 1) cis-9, trans-11, cis-15 18:3 + cis-9, trans-13, cis-15 18:3 + trans-10, cis-12 18:2 (CD18:3 + CLA); 2) cis-9, cis-12, cis-15 18:3 + cis-9, cis-12 18:2 as a control (ALA + LA); or 3) cis-9, cis-12, cis-15 18:3 + trans-10, cis-12 18:2, as a positive control (ALA + CLA). Milk production was recorded, and milk was sampled daily at each milking for analyses of fat, protein, lactose, milk urea nitrogen, and somatic cell count. Dry matter intake, milk yield, and milk protein were not affected by treatment. Over the experimental period, milk fat content was decreased by 7% for cows that received either ALA + CLA or CD18:3 + CLA compared with ALA + LA. The temporal pattern of milk fat content showed a linear decrease during the infusion period for ALA + CLA and CD18:3 + CLA treatment groups. The transfer efficiencies of conjugated diene 18:3 isomers into milk fat averaged 39 and 32% for cis-9, trans-11, cis-15 18:3 and cis-9, trans-13, cis-15 18:3, respectively. The CD18:3 + CLA treatment had no effect on milk fat concentration beyond that attributable to its trans-10, cis-12 18:2 content. In conclusion, results from the current study offered no support for a role of either cis-9, trans-11, cis-15 18:3 or cis-9, trans-13, cis-15 in MFD. 相似文献
15.
Examination of the persistency of milk fatty acid composition responses to fish oil and sunflower oil in the diet of dairy cows 总被引:2,自引:0,他引:2
Shingfield KJ Reynolds CK Hervás G Griinari JM Grandison AS Beever DE 《Journal of dairy science》2006,89(2):714-732
Based on the potential benefits of cis-9, trans-11 conjugated linoleic acid (CLA) for human health, there is a need to develop effective strategies for enhancing milk fat CLA concentrations. Levels of cis-9, trans-11 CLA in milk can be increased by supplements of fish oil (FO) and sunflower oil (SO), but there is considerable variation in the response. Part of this variance may reflect time-dependent ruminal adaptations to high levels of lipid in the diet, which lead to alterations in the formation of specific biohydrogenation intermediates. To test this hypothesis, 16 late lactation Holstein-British Friesian cows were used in a repeated measures randomized block design to examine milk fatty acid composition responses to FO and SO in the diet over a 28-d period. Cows were allocated at random to corn silage-based rations (8 per treatment) containing 0 (control) or 45 g of oil supplement/kg of dry matter consisting (1:2; wt/wt) of FO and SO (FSO), and milk composition was determined on alternate days from d 1. Compared with the control, the FSO diet decreased mean dry matter intake (21.1 vs. 17.9 kg/d), milk fat (47.7 vs. 32.6 g/kg), and protein content (36.1 vs. 33.3 g/kg), but had no effect on milk yield (27.1 vs. 26.4 kg/d). Reductions in milk fat content relative to the FSO diet were associated with increases in milk trans-10 18:1, trans-10, cis-12 CLA, and trans-9, cis-11 CLA concentrations (r2 = 0.74, 0.57, and 0.80, respectively). Compared with the control, the FSO diet reduced milk 4:0 to 18:0 and cis 18:1 content and increased trans 18:1, trans 18:2, cis-9, trans-11 CLA, 20:5 n-3, and 22:6 n-3 concentrations. The FSO diet caused a rapid elevation in milk cis-9, trans-11 CLA content, reaching a maximum of 5.37 g/100 g of fatty acids on d 5, but these increases were transient, declining to 2.35 g/100 g of fatty acids by d 15. They remained relatively constant thereafter. Even though concentrations of trans-11 18:1 followed the same pattern of temporal changes as cis-9, trans-11 CLA, the total trans 18:1 content of FSO milk was unchanged because of the concomitant increases in the concentration of other isomers (Δ4-10 and Δ12-15), predominantely trans-10 18:1. In conclusion, supplementing diets with FSO enhances milk fat cis-9, trans-11 CLA content, but the high level of enrichment declines because of changes in ruminal biohydrogenation that result in trans-10 replacing trans-11 as the major 18:1 biohydrogenation intermediate formed in the rumen. 相似文献
16.
The objective of this study was to compare the effects of abomasal infusion of butterfat containing all fatty acids (FA) present in milk, including the short- and medium-chain FA, with infusion of only the long-chain FA (LCFA) present in milk, on the FA composition and milk fat yield in lactating dairy cows. Eight rumen-fistulated Holstein cows, in early lactation (49 ± 20 days in milk) were used in a replicated 4 × 4 Latin square design. Treatments were abomasal infusion of the following: 1) no infusion (control), 2) 400 g/d of butterfat (butterfat), 3) 245 g/d of LCFA (blend of 59% cocoa butter, 36% olive oil, and 5% palm oil) providing 50% of the 16:0 and equivalent amounts of C18 FA as found in 400 g of butterfat, and 4) 100 g/d of conjugated linoleic acid (CLA, negative control), providing 10 g of trans-10, cis-12 CLA. Fat supplements were infused in equal portions 3 times daily at 0800, 1400, and 1800 h during the last 2 wk of each 3-wk experimental period. Daily dry matter intake and milk production were unaffected by the infusion treatments. Butterfat infusion increased milk fat percentage by 14% to 4.26% and milk fat yield by 21% to 1,421 g/d compared with controls (3.74% and 1,178 g/d). Milk fat percentage and fat yield were decreased by 43% by CLA. Milk protein percentage was higher (3.70%) in CLA-infused cows than in control (3.30%), butterfat (3.28%), or LCFA (3.27%) treatments. Although LCFA had no effect on fat synthesis, abomasal infusion of butterfat increased milk fat percentage and yield, suggesting that the availability of short- and medium-chain FA may be a limiting factor for milk fat synthesis. 相似文献
17.
This study evaluated the effect of a blend of synthetic antioxidants on the yield of milk and milk components and milk fatty acid composition in dairy cows fed a diet designed to cause milk fat depression (MFD). We hypothesized that supplementing a synthetic antioxidant to diets with a high rumen unsaturated fatty acid load (RUFAL) would decrease the severity of MFD. Sixteen lactating Holstein cows (163 ± 47 d in milk), in a crossover design with two 21-d periods, were fed a corn silage and grass silage-based diet containing 15% distillers grains. The diet contained 34% neutral detergent fiber, 18% crude protein, 26% starch, and 4.3% total fatty acids (dry matter basis). Cows were fed the diet without supplementation (control; CON) or supplemented with 0.02% (dry matter basis) of a synthetic antioxidant (AOX; Agrado Plus, Novus International Inc., St. Charles, MO). Dry matter intake and milk yields were recorded daily. Milk samples were collected at the start of the study for baseline values and the end of each period (d 20–21) and analyzed for milk components and fatty acid composition. Dry matter intake and milk yield were unaffected by treatment and averaged 25.9 and 50.2 kg/d, respectively. Similarly, we observed no effect of treatment on yields of fat, protein, lactose, 3.5% fat-corrected milk, energy-corrected milk, feed efficiency, body weight, or body condition score. Milk fat concentration and yield were both reduced by the high RUFAL diets. We observed a tendency for AOX to increase the concentration of milk fat and decrease the concentration of milk protein. Yields of de novo and preformed fatty acids were not affected by treatment, although we detected a trend for a slight increase in the yield of 16-carbon fatty acid for AOX compared with CON. Treatment had only minor effects on individual milk fatty acids, except for the concentration and yield of linoleic acid, which were over 90% higher for AOX compared with CON. In conclusion, milk fat concentration and yield were reduced by a high RUFAL diet containing 15% distillers grains; however, supplementation with AOX did not overcome the MFD induced by this diet. 相似文献
18.
A. Halmemies-Beauchet-Filleau K.J. Shingfield I. Simpura T. Kokkonen S. Jaakkola V. Toivonen A. Vanhatalo 《Journal of dairy science》2017,100(1):305-324
Camelina is an ancient oilseed crop that produces an oil rich in cis-9,cis-12 18:2 (linoleic acid, LA) and cis-9,cis-12,cis-15 18:3 (α-linolenic acid, ALA); however, reports on the use of camelina oil (CO) for ruminants are limited. The present study investigated the effects of incremental CO supplementation on animal performance, milk fatty acid (FA) composition, and milk sensory quality. Eight Finnish Ayrshire cows (91 d in milk) were used in replicated 4 × 4 Latin squares with 21-d periods. Treatments comprised 4 concentrates (12 kg/d on an air-dry basis) based on cereals and camelina expeller containing 0 (control), 2, 4, or 6% CO on an air-dry basis. Cows were offered a mixture of grass and red clover silage (RCS; 1:1 on a dry matter basis) ad libitum. Incremental CO supplementation linearly decreased silage and total dry matter intake, and linearly increased LA, ALA, and total FA intake. Treatments had no effect on whole-tract apparent organic matter or fiber digestibility and did not have a major influence on rumen fermentation. Supplements of CO quadratically decreased daily milk and lactose yields and linearly decreased milk protein yield and milk taste panel score from 4.2 to 3.6 [on a scale of 1 (poor) to 5 (excellent)], without altering milk fat yield. Inclusion of CO linearly decreased the proportions of saturated FA synthesized de novo (4:0 to 16:0), without altering milk fat 18:0, cis-9 18:1, LA, and ALA concentrations. Milk fat 18:0 was low (<5 g/100 g of FA) across all treatments. Increases in CO linearly decreased the proportions of total saturates from 58 to 45 g/100 g of FA and linearly enriched trans-11 18:1, cis-9,trans-11 18:2, and trans-11,cis-15 18:2 from 5.2, 2.6, and 1.7 to 11, 4.3, and 5.8 g/100 g of FA, respectively. Furthermore, CO quadratically decreased milk fat trans-10 18:1 and linearly decreased trans-10,cis-12 18:2 concentration. Overall, milk FA composition on all treatments suggested that one or more components in camelina seeds may inhibit the complete reduction of 18-carbon unsaturates in the rumen. In conclusion, CO decreased the secretion of saturated FA in milk and increased those of the trans-11 biohydrogenation pathway or their desaturation products. Despite increasing the intake of 18-carbon unsaturated FA, CO had no effect on the secretions of 18:0, cis-9 18:1, LA, or ALA in milk. Concentrates containing camelina expeller and 2% CO could be used for the commercial production of low-saturated milk from grass- and RCS-based diets without major adverse effects on animal performance. 相似文献
19.
The objective of the present experiment was to investigate the effect of monensin (MN) on the time course of recovery from diet-induced milk fat depression. Milk fat depression was induced in all cows (n = 16) during the first phase of each period by feeding a low-fiber, high-unsaturated fat diet [25.3% neutral detergent fiber (NDF), 6.9% fatty acids (FA), and 3.24% C18:2] with MN (450 mg/cow per day) for 10 to 14 d. A recovery phase of 18 d followed, where cows were switched to a higher-fiber and lower unsaturated fat diet (31.2% NDF, 4.3% FA, and 1.7% C18:2). According to a crossover design, treatments during recovery were (1) control (no MN supplementation) or (2) continued MN supplementation. Milk yield, milk composition, and milk FA profile were measured every 3 d during recovery. No effect was observed of MN on dry matter intake or yield of milk, milk protein, and lactose. Milk fat concentration and yield increased progressively during recovery in both treatments. Monensin decreased milk fat yield from d 6 to 15, but it was the same as the control on d 18. A treatment by time interaction on milk fat concentration was detected, which was decreased by MN only on d 3 and 6. The yield of milk de novo synthesized FA increased progressively in both treatments and was not affected by treatment. Similarly, yield of 16-C FA increased progressively, but was decreased by MN on d 6 and 9. Preformed FA yield was lower in the MN group from d 6 to 15, but was not different from the control on d 18. Importantly, milk FA concentration of trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid rapidly decreased in both groups; however, MN slightly increased trans-10 C18:1 concentration above baseline on d 15 and 18. In conclusion, MN supplementation had minimal effect on recovery of normal rumen biohydrogenation and de novo FA synthesis during recovery from milk fat depression by correction of dietary starch, NDF, and polyunsaturated FA concentration, but moderately decreased recovery of preformed FA in milk. 相似文献
20.
Cruz-Hernandez C Kramer JK Kennelly JJ Glimm DR Sorensen BM Okine EK Goonewardene LA Weselake RJ 《Journal of dairy science》2007,90(8):3786-3801
The objective was to evaluate different levels of sun-flower oil (SFO) in dairy rations to increase vaccenic (trans-11-18:1) and rumenic acids (cis-9,trans-11-18:2) in milk fat, and assess the content and composition of other trans-octadecenoic (trans-18:1) and conjugated linoleic acids (CLA) isomers. Eighty lactating Holstein cows were fed control diets for 4 wk and then placed on 4 diets for 38 d; milk fat was analyzed after 10 and 38 d. The treatments were: control, 1.5% SFO plus 0.5% fish oil (FO), 3% SFO plus 0.5% FO, and 4.5% SFO plus 0.5% FO. The forage-to-concentrate ratio was 50:50 and consisted of barley/alfalfa/hay silage and corn/barley grain concentrate. There were no differences in milk production. Supplementation of SFO/FO reduced milk fat compared with respective pretreatment periods, but milk protein and lactose levels were not affected. There was a linear decrease in all short- and medium-chain saturated fatty acids (SFA) in milk fat after 10 d (25.5, 24.1, 20.2, and 16.7%) and a corresponding linear increase in total trans-18:1 (5.2, 9.1, 14.1, and 21.3%) and total CLA (0.7, 1.9, 2.4, and 3.9%). The other FA in milk fat were not affected. Separation of trans-18:1 isomers was achieved by combination of gas chromatography (GC; 100-m highly polar capillary column) and prior separation of trans FA by silver ion-thin layer chromatography followed by GC. The CLA isomers were resolved by a combination of GC and silver ion-HPLC. The trans-11- and trans-10-18:1 isomers accounted for ∼50% of the total trans-18:1 increase when SFO/FO diets were fed. On continued feeding to 38 d, trans-11-18:1 increased with 1.5% SFO/FO, stayed the same with 3%, and declined with 4.5% SFO/FO. Rumenic acid showed a similar pattern on continued feeding as trans-11-18:2; levels increased to 0.43, 1.5, 1.9, and 3.4% at 10 d and to 0.42, 2.15, 2.09, and 2.78% at 38 d. Rumenic acid was the major CLA isomer in all 4 diets: 66, 77, 78 and 85%. The CLA isomers trans-7,cis-9-, trans-9,cis-11-, trans-10,cis-12-, trans-11,trans-13-, and trans-9,trans-11-/trans-10,trans-12-18:2 also increased from 0.18 (control) to 0.52% (4.5% SFO/FO). Milk fat produced from 3% SFO/FO appeared most promising: trans-11-18:1 and cis-9,trans-11-18:2 increased 4.5-fold, total SFA reduced 18%, and moderate levels of trans-10-18:1 (3.2%), other trans-18:1 (6.6%) and CLA isomers (0.5%) were observed, and that composition remained unchanged to 38 d. The 4.5% SFO/FO diet produced higher levels of trans-11-18:1 and cis-9,trans-11-18:2, a 28% reduction in SFA, and similar levels of other trans-18:1 (9.2%) and CLA isomers (0.52%), but the higher levels of trans-11-18:1 and cis-9,trans-11-18:2 were not sustained. A stable milk fat quality was achieved by feeding moderate amounts of SFO (3% of DM) in the presence of 0.5% FO that had 4% vaccenic and 2% rumenic acids. 相似文献