首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Heat stress is detrimental to dairy production and affects numerous variables including feed intake and milk production. It is unclear, however, whether decreased milk yield is primarily due to the associated reduction in feed intake or the cumulative effects of heat stress on feed intake, metabolism, and physiology of dairy cattle. To distinguish between direct (not mediated by feed intake) and indirect (mediated by feed intake) effects of heat stress on physiological and metabolic indices, Holstein cows (n = 6) housed in thermal neutral conditions were pair-fed (PF) to match the nutrient intake of heat-stressed cows (HS; n = 6). All cows were subjected to 2 experimental periods: 1) thermal neutral and ad libitum intake for 9 d (P1) and 2) HS or PF for 9 d (P2). Heat-stress conditions were cyclical with daily temperatures ranging from 29.7 to 39.2°C. During P1 and P2 all cows received i.v. challenges of epinephrine (d 6 of each period), and growth hormone releasing factor (GRF; d 7 of each period), and had circulating somatotropin (ST) profiles characterized (every 15 min for 6 h on d 8 of each period). During P2, HS cows were hyperthermic for the entire day and peak differences in rectal temperatures and respiration rates occurred in the afternoon (38.7 to 40.2°C and 46 to 82 breaths/min, respectively). Heat stress decreased dry matter intake by greater than 35% and, by design, PF cows had similar reduced intakes. Heat stress and PF decreased milk yield, although the pattern and magnitude (40 and 21%, respectively) differed between treatments. The reduction in dry matter intake caused by HS accounted for only approximately 35% of the decrease in milk production. Both HS and PF cows entered into negative energy balance, but only PF cows had increased (approximately 120%) basal nonesterified fatty acid (NEFA) concentrations. Both PF and HS cows had decreased (7%) plasma glucose levels. The NEFA response to epinephrine did not differ between treatments but was increased (greater than 50%) in all cows during P2. During P2, HS (but not PF) cows had a modest reduction (16%) in plasma insulin-like growth factor-I. Neither treatment nor period had an effect on the ST response to GRF and there was little or no treatment effect on mean ST levels or pulsatility characteristics, but both HS and PF cows had reduced mean ST concentrations during P2. In summary, reduced nutrient intake accounted for just 35% of the HS-induced decrease in milk yield, and modest changes in the somatotropic axis may have contributed to a portion of the remainder. Differences in basal NEFA between PF and HS cows suggest a shift in postabsorptive metabolism and nutrient partitioning that may explain the additional reduction in milk yield in cows experiencing a thermal load.  相似文献   

2.
Effects of heat stress on energetic metabolism in lactating Holstein cows   总被引:6,自引:0,他引:6  
Heat stress has an enormous economic impact on the global dairy industry, but the mechanisms by which hyperthermia negatively affect systemic physiology and milk synthesis are not clear. Study objectives were to evaluate production parameters and metabolic variables in lactating dairy cows during short-term heat stress or pair-fed conditions coupled with bST administration. Twenty-two multiparous Holstein cows were subjected to 3 experimental periods: 1) thermoneutral conditions with ad libitum intake for 7 d (P1); 2) heat stress (HS) with ad libitum intake (n = 10) or pair-fed (PF) in thermoneutral conditions (n = 12) for 7 d (P2), and 3) 7 d of HS or PF in conditions as described in P2 with recombinant bovine somatotropin administered on d 1 (P3). All cows received an intravenous glucose tolerance test (GTT) on d 5 of each period. Heat stress conditions were cyclical and temperatures ranged from 29.4 to 38.9°C. Rectal temperatures and respiration rates increased during heat stress (38.6-40.4°C and 44-89 breaths/min, respectively). Heat stress reduced dry matter intake by 30% and by design PF cows had similar intake reductions (28%). During heat stress and pair-feeding, milk yield decreased by 27.6% (9.6 kg) and 13.9% (4.8 kg), respectively, indicating that reduced feed intake accounted for only 50% of the decreased milk production. Milk yield increased with recombinant bovine somatotropin in both HS (9.7%) and PF (16.1%) cows. Cows in both groups were in positive energy balance (3.95 Mcal/d) during P1 but entered negative energy balance during P2 and P3 (−5.65 Mcal/d). Heat stress and pair-feeding treatments decreased (9.3%) basal glucose concentrations. Heat stress conditions had no effect on basal NEFA levels during P2; however, PF cows (despite a similar calculated energy balance) had a 2-fold increase in basal NEFA concentrations. Both groups had increased plasma urea nitrogen levels during P2 and P3 compared with P1. Basal insulin levels increased (37%) during P2 and P3 in HS cows but did not differ between periods in PF cows. During P2 and compared with P1, PF cows had a decreased rate of glucose disposal, whereas HS cows had a similar disposal rate following the GTT. During P2 and compared with P1, PF cows had a reduced insulin response whereas HS cows had a similar insulin response to the GTT. In summary, reduced nutrient intake accounted for only 50% of heat stress-induced decreases in milk yield, and feed intake-independent shifts in postabsorptive glucose and lipid homeostasis may contribute to the additional reduction in milk yield.  相似文献   

3.
《Journal of dairy science》2021,104(11):12139-12152
Cooling can alleviate the negative consequences of heat stress on multiple milk production metrics in dairy cows. However, it is still controversial whether cooling can increase milk protein content compared with heat-stressed cows. The objective of the present study was to evaluate the relief effect of cooling on the decrease in milk protein concentration during heat stress and elucidate the potential metabolic mechanisms. Thirty lactating multiparous Holstein cows (days in milk = 175 ± 25 d, milk yield = 27.5 ± 2.5 kg/d; mean ± SD) were assigned to 1 of 3 treatments: heat stress (HS; n = 10), cooling (CL; n = 10), and cooling with pair-feeding (PFCL; n = 10). The barns for PFCL and CL cows were equipped with sprinklers and fans, whereas the barn for HS cows were not. The average temperature-humidity index during the experiment ranged from 74 to 83. The spraying was activated automatically 2 times per day (1130–1330 h and 1500–1600 h) with 3 min on and 6 min off during the first 2 wk, and 1.5 min on and 3 min off during the last 2 wk, whereas the fans operated 24 h/d. The experiment lasted for 4 wk in total. Milk, urine, feces, total mixed ration, blood, and rumen fluid samples were collected weekly. Compared with HS, feed efficiency (1.24 and 1.49), milk protein yield (0.82 and 0.94 kg/d), and milk fat yield (0.98 and 1.26 kg/d) were increased in PFCL, whereas the differences between CL and HS were not significant. Compared with HS cows, PFCL and CL cows had a lower respiratory rate (70.6, 59.1, and 60.3 breaths per minute, respectively), rectal temperature (38.95, 38.61, and 38.51°C), and shoulder skin temperature (33.95, 33.25, 33.40°C), and had greater milk protein content (3.41, 3.72, and 3.69%) and milk fat percent (4.08, 4.97, 4.65%). Both the blood activity of catalase (increased by 12.8 and 41.0%) and glutathione peroxidase (12.6 and 40.4%) of PFCL and CL cows were greater than the HS cows. Compared with HS, cooling increased the blood content of glucose, methionine, threonine, and cystathionine by 10.7% and 10.3%, 19.0% and 9.5%, 15.8% and 12.0%, and 9.5% and 23.8% in PFCL and CL, respectively. In conclusion, the results indicated that cooling partially rescued milk protein synthesis induced by heat stress, and the potential mechanism may have been due to increased antioxidant ability, blood glucose, and key AA. Consequently, in addition to modifying the environment, nutritional and physiological strategies designed to influence carbohydrate, AA, and oxidative homeostasis may be an opportunity to maintain or correct low milk protein content during the warm summer months.  相似文献   

4.
5.
Twelve multiparous Holstein cows (145 ± 9 d in milk) were randomly assigned to receive either 0 g/d of encapsulated niacin (control diet; C) or 12 g/d of encapsulated niacin (NI) and were exposed to thermoneutral (TN; 7 d) or heat stress (HS; 7 d) conditions in climate-controlled chambers. The temperature-humidity index during TN conditions never exceeded 72, whereas HS conditions consisted of a circadian temperature range in which the temperature-humidity index exceeded 72 for 12 h/d. Measures of thermal status obtained 4 times/d included respiration rate (RR); rectal temperature; surface temperature of both shaved and unshaved areas at the rump, shoulder, and tail head; vaginal temperature; and evaporative heat loss (EVHL) of the shoulder shaved and unshaved areas. Cows fed NI had increased free plasma niacin concentrations in both the TN and HS periods (1.70 vs. 1.47 ± 0.17 μg/mL). Milk yield did not differ between dietary groups or periods. Dry matter intake was not affected by NI, but decreased (3%) for both C and NI treatments during HS. Water intake was increased during HS in both treatments (C: 40.4 vs. 57.7 ± 0.8 L/d for TN and HS, respectively; NI: 52.7 vs. 57.7 ± 0.8 L/d for TN and HS, respectively). Average EVHL for shaved and unshaved skin for C and NI treatments was higher during HS (90.1 vs. 108.1 g/m2 per hour) than TN (20.7 vs. 15.7 ± 4.9 g/m2 per hour). Between 1000 and 1600 h, mean EVHL for shaved and unshaved areas for NI fed cows was higher than for C fed cows (106.9 vs. 94.4 ± 4.9 g/m2 per hour). The NI fed cows had decreased rectal temperatures during HS compared with the C fed cows (38.17 vs. 38.34 ± 0.07°C) and had lower vaginal temperatures (38.0 vs. 38.4 ± 0.02°C). Calculated metabolic rate decreased during HS regardless of diet (50.25 and 49.70 ± 0.48 kcal/kg of body weight per day for TN and HS, respectively). Feeding NI increased free plasma NI levels, increased EVHL during peak thermal load, and was associated with a small but detectable reduction in rectal and vaginal temperatures in lactating dairy cows experiencing a mild thermal load.  相似文献   

6.
Twenty-four multiparous high-producing dairy cows (40.0 ± 1.4 kg/d) were used in a factorial design to evaluate effects of 2 environments [thermoneutral (TN) and heat stress (HS)] and a dose range of dietary rumen-protected niacin (RPN; 0, 4, 8, or 12 g/d) on body temperature, sweating rate, feed intake, water intake, production parameters, and blood niacin concentrations. Temperature–humidity index values during TN never exceeded 68 (stress threshold), whereas temperature–humidity index values during HS were above 68 for 24 h/d. The HS environment increased hair coat and skin, rectal, and vaginal temperatures; respiration rate; skin and hair coat evaporative heat loss; and water intake and decreased DMI (3.5 kg/d), milk yield (4.1 kg/d), 4% fat-corrected milk (2.7 kg/d), and milk protein yield (181.7 g/d). Sweating rate increased during HS (12.7 g/m2 per h) compared with TN, but this increase was only 10% of that reported in summer-acclimated cattle. Niacin supplementation did not affect sweating rate, dry-matter intake, or milk yield in either environment. Rumen-protected niacin increased plasma and milk niacin concentrations in a linear manner. Heat stress reduced niacin concentration in whole blood (7.86 vs. 6.89 μg/mL) but not in milk. Reduced blood niacin concentration was partially corrected by dietary RPN. An interaction existed between dietary RPN and environment; dietary RPN linearly increased water intake in both environments, but the increase was greater during HS conditions. Increasing dietary RPN did not influence skin temperatures. During TN, supplementing 12 g/d of RPN increased hair coat (unshaved skin; 30.3 vs. 31.3°C at 1600 h) but not shaved skin (32.8 vs. 32.9°C at 1600 h) temperature when compared with 0 g/d at all time points, whereas the maximum temperature (18°C) of the room was lower than skin temperature. These data suggest that dietary RPN increased water intake during both TN and HS and hair coat temperature during TN; however, core body temperature was unaffected. Thus, encapsulated niacin did not improve thermotolerance of winter-acclimated lactating dairy cows exposed to moderate thermal stress in Arizona.  相似文献   

7.
Holstein cows (n = 30) were balanced by days in milk, milk production, and parity (91 ± 5.9 d in milk, 36.2 ± 2.5 kg/d, and 3.1 ± 1.4, respectively) and fed OmniGen-AF (OG; Phibro Animal Health, Teaneck, NJ), an immune stimulant, at 0 g/cow per d for control (CON) or 56 g/cow per d for OG for 52 d on a commercial dairy. At 52 d of the study cows were randomly selected (n = 12) from both groups (6 OG and 6 CON) and housed in environmentally controlled rooms at the Agricultural Research Complex for 21 d at the University of Arizona. Cows were subjected to 7 d of thermoneutral (TN) conditions, 10 d of heat stress (HS), and 4 d of recovery (REC) under TN conditions. Feed intake, milk production, and milk composition were measured daily. Rectal temperatures (RT) and respiration rates (RR) were recorded 3 times per day (600, 1400, and 1800 h). Blood samples were taken on d 7 (TN), 8 (HS), 10 (HS), 17 (HS), and 18 (TN) during the Agricultural Research Complex segment. Cows in HS had higher RR and RT and water intake and lower dry matter intake and milk yield than these measures in TN. There was a treatment × environment interaction with cows fed OG having lower RR and RT and higher dry matter intake during peak thermal loads than CON. However, milk yield did not differ between groups. Cows fed OG had lower milk fat percent than CON (3.7 vs 4.3%) during HS. The SCC content of milk did not differ between treatment groups but rose in both groups during the REC phase following HS. Plasma insulin and plasma glucose levels were not different between groups. However, plasma insulin in both groups was lower during acute HS, then rose across the HS period, and was highest during the REC phase. Plasma cortisol levels were highest in all cows on the first day of HS (d 8) but were lower in cows fed OG compared with CON. However, plasma ACTH concentrations were elevated in OG-fed animals at all times samples were collected. Plasma ACTH was also elevated in cows fed both OG and CON during HS. Feeding OG reduced plasma cortisol during acute but not chronic HS and increased basal plasma ACTH, suggesting that OG treatment may alter the hypothalamic pituitary adrenal axis.  相似文献   

8.
Multiparous cows (n = 34, 89 d in milk, 537 kg) housed in environmental chambers were fed a control total mixed ration or one containing monensin (450 mg/cow per day) during 2 experimental periods (P): (1) thermal neutral (TN) conditions (constant 20°C) with ad libitum intake for 9 d, and (2) heat stress (HS, n = 16) or pair-fed [PF; in TN (PFTN); n = 18] for 9 d. Heat-stress was cyclical with temperatures ranging from 29.4 to 38.9°C. Rectal temperatures and respiration rates increased in HS compared with PFTN cows (38.4 to 40.4°C, 40 to 93 breaths/min). Heat stress reduced dry matter intake (DMI, 28%), and by design, PFTN cows had similar intakes. Monensin-fed cows consumed less DMI (1.59 kg/d) independent of environment. Milk yield decreased 29% (9.1 kg) in HS and 15% (4.5 kg) in PFTN cows, indicating that reduced DMI accounted for only 50% of the decreased milk yield during HS. Monensin had no effect on milk yield in either environment. Both HS and PFTN cows entered into calculated negative energy balance (−2.7 Mcal/d), and feeding monensin increased feed efficiency (7%) regardless of environment. The glucose response to an epinephrine (EPI) challenge increased (27%) during P2 for both HS and PFTN cows, whereas the nonesterified fatty acid response to the EPI challenge was larger (56%) during P2 in the PFTN compared with the HS cows. Compared with P1, whole-body glucose rate of appearance (Ra) decreased similarly during P2 in both HS and PFTN cows (646 vs. 514 mmol/h). Although having similar rates of glucose Ra, HS cows synthesized approximately 225 g less milk lactose; therefore, on a milk yield basis, glucose Ra decreased (3.3%) in PFTN but increased (5.6%) in HS cows. Regardless of environment, monensin-fed cows had increased (10%) glucose Ra per unit of DMI. From the results we suggest that the liver remains sensitive but adipose tissue becomes refractory to catabolic signals and that glucose Ra (presumably of hepatic origin) is preferentially utilized for processes other than milk synthesis during HS.  相似文献   

9.
Heat stress (HS) decreases milk protein synthesis beyond what would be expected based on the concomitant reduction in feed intake. The aim of the present study was to evaluate the direct effects of HS on milk protein production. Four multiparous, lactating Holstein cows (101 ± 10 d in milk, 574 ± 36 kg of body weight, 38 ± 2 kg of milk/d) were individually housed in environmental chambers and randomly allocated to 1 of 2 groups in a crossover design. The study was divided into 2 periods with 2 identical experimental phases (control phase and trial phase) within each period. During phase 1 or control phase (9 d), all cows were housed in thermal neutral conditions (TN; 20°C, 55% humidity) and fed ad libitum. During phase 2 or treatment phase (9 d), group 1 was exposed to cyclical HS conditions (32 to 36°C, 40% humidity) and fed ad libitum, whereas group 2 remained in TN conditions but was pair-fed (PFTN) to their HS counterparts to eliminate the confounding effects of dissimilar feed intake. After a 30-d washout period in TN conditions, the study was repeated (period 2), inverting the environmental treatments of the groups relative to period 1: group 2 was exposed to HS and group 1 to PFTN conditions. Compared with PFTN conditions, HS decreased milk yield (17.0%), milk protein (4.1%), milk protein yield (19%), 4% fat-corrected milk (23%), and fat yield (19%). Apparent digestibility of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, crude protein, and ether extract was increased (11.1–42.9%) in HS cows, as well as rumen liquor ammonia (before feeding 33.2%; after feeding 29.5%) and volatile fatty acid concentration (45.3%) before feeding. In addition, ruminal pH was reduced (9.5 and 6% before and after feeding, respectively) during HS. Heat stress decreased plasma free amino acids (AA; 17.1%) and tended to increase and increased blood, urine, and milk urea nitrogen (17.2, 243, and 24.5%, respectively). Further, HS cows had reduced plasma glucose (8%) and nonesterified fatty acid (39.8%) concentrations compared with PFTN controls. These data suggest that HS increases systemic AA utilization (e.g., decreased plasma AA and increased nitrogen excretion), a scenario that limits the AA supply to the mammary gland for milk protein synthesis. Furthermore, the increase in AA requirements during HS might represent the increased need for gluconeogenic precursors, as HS is thought to prioritize glucose utilization as a fuel at the expense of nonesterified fatty acids.  相似文献   

10.
《Journal of dairy science》2021,104(11):11580-11592
The continuous trend for a narrowing margin between feed cost and milk prices across dairy farms in the United States highlights the need to improve and maintain feed efficiency. Yeast culture products are alternative supplements that have been evaluated in terms of milk performance and feed efficiency; however, less is known about their potential effects on altering rumen microbial populations and consequently rumen fermentation. Therefore, the objective of this study was to evaluate the effect of yeast culture supplementation on lactation performance, rumen fermentation profile, and abundance of major species of ruminal bacteria in lactating dairy cows. Forty mid-lactation Holstein dairy cows (121 ± 43 days in milk; mean ± standard deviation; 32 multiparous and 8 primiparous) were used in a randomized complete block design with a 7-d adaptation period followed by a 60-d treatment period. Cows were blocked by parity, days in milk, and previous lactation milk yield and assigned to a basal total mixed ration (TMR; 1.6 Mcal/kg of dry matter, 14.6% crude protein, 21.5% starch, and 38.4% neutral detergent fiber) plus 114 g/d of ground corn (CON; n = 20) or basal TMR plus 100 g/d of ground corn and 14 g/d of yeast culture (YC; n = 20; Culture Classic HD, Cellerate Yeast Solutions, Phibro Animal Health Corp.). Treatments were top-dressed over the TMR once a day. Cows were individually fed 1 × /d throughout the trial. Blood and rumen fluid samples were collected in a subset of cows (n = 10/treatment) at 0, 30, and 60 d of the treatment period. Rumen fluid sampled via esophageal tubing was analyzed for ammonia-N, volatile fatty acids (VFA), and ruminal bacteria populations via quantitative PCR amplification of 16S ribosomal DNA genes. Milk yield was not affected by treatment effects. Energy balance was lower in YC cows than CON, which was partially explain by the trend for lower dry matter intake as % body weight in YC cows than CON. Cows fed YC had greater overall ruminal pH and greater total VFA (mM) at 60 d of treatment period. There was a contrasting greater molar proportion of isovalerate and lower acetate proportion in YC-fed cows compared with CON cows. Although the ruminal abundance of specific fiber-digesting bacteria, including Eubacterium ruminantium and Ruminococcus flavefaciens, was increased in YC cows, others such as Fibrobacter succinogenes were decreased. The abundance of amylolytic bacteria such as Ruminobacter amylophilus and Succinimonas amylolytica were decreased in YC cows than CON. Our results indicate that the yeast culture supplementation seems to promote some specific fiber-digesting bacteria while decreasing amylolytic bacteria, which might have partially promoted more neutral rumen pH, greater total VFA, and isovalerate.  相似文献   

11.
《Journal of dairy science》2018,101(1):201-221
The objectives of this experiment were to evaluate the effect of feeding a culture of Saccharomyces cerevisiae on rumen metabolism and digestibility when cows are fed diets varying in starch content. Four lactating Holstein cows were assigned to a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Treatments were low starch (LS; 23% of diet DM) and no yeast culture (YC; LS-control), LS and 15 g of YC/d (LS-YC), high starch (HS; 29% of diet DM) and no YC (HS-control), and HS and 15 g of YC/d (HS-YC). Periods lasted 28 d, with the last 9 d for data collection. Days 20 to 24 were used to determine production, nutrient flow, and digestibility. On d 25, 3 kg of corn grain DM was placed in the rumen 1 h before the morning feeding, and yields of milk and milk components were measured after the challenge. Blood was sampled −1, 3, 7, and 11 h relative to the morning feeding on d 24 and 25. Rumen pH was measured continuously on d 24 and 25. Rumen papillae were collected on d 24 and 28 to quantify mRNA expression of select genes. Supplementing YC increased yields of milk (26.3 vs. 29.6 kg/d), energy-corrected milk (ECM; 26.5 vs. 30.3 kg/d), fat (0.94 vs. 1.08 kg/d), true protein (0.84 vs. 0.96 kg/d), and ECM/dry matter intake (1.15 vs. 1.30) compared with the control but did not affect dry matter intake (22.6 vs. 22.9 kg/d). Cows fed HS had increased milk true protein percentage (3.18 vs. 3.31%) and yield (0.87 vs. 0.94 kg/d) compared with cows fed LS. Feeding HS-YC increased the proportion of dietary N incorporated into milk true protein from 24.9% in the other 3 treatments to 29.6%. Feeding HS increased the concentration of propionate (21.7 vs. 32.3 mM) and reduced that of NH3-N (8.3 vs. 6.7 mg/dL) in rumen fluid compared with the control, and combining HS with YC in HS-YC tended to increase microbial N synthesis compared with LS-YC (275 vs. 322 g/d). Supplementing YC to cows fed HS reduced plasma haptoglobin and rumen lactate concentrations, increased mean rumen pH, reduced the time with pH <6.0, and prevented the decrease in rumen neutral detergent fiber digestion caused by HS. Cows fed HS had less total-tract digestion of organic matter (73.9 vs. 72.4%) because of reduced acid detergent fiber (57.6 vs. 51.7%) and neutral detergent fiber (60.9 vs. 56.7%) digestibility. Production performance after the challenge was similar to that before the challenge, and YC improved yield of ECM. After the challenge, supplementing YC tended to reduce rumen lactate concentration compared with the control and reduced haptoglobin in cows fed HS. Feeding HS but not YC increased expression in rumen papillae of genes for receptors (FFAR2 and FFAR3) and transporter (SLC16A3) of short-chain fatty acids but did not affect genes involved in transport of Na+/H+ or water or in inflammatory response. Supplementing YC to dairy cows improved lactation performance in diets containing low or high starch, and mechanisms might be partially attributed to improvements in rumen pH, digestion of fiber, microbial N synthesis, and reduction in acute phase response.  相似文献   

12.
Heat-stressed dairy cattle are bioenergetically similar to early-lactation cows in that dietary energy may be inadequate to support maximum milk and milk component synthesis. Study objectives were to evaluate whether conjugated linoleic acids- (CLA-) induced milk fat depression (MFD) during heat stress would allow for increased milk and milk component synthesis. In addition, CLA effects on production variables and its ability to induce MFD were compared between Holstein and Brown Swiss cows. Multiparous cows (n = 8, Holstein; n = 5, Brown Swiss) averaging 97 +/- 17 d in milk were used in a crossover design during the summer (mean temperature-humidity index = 75.7). Treatment periods were 21 d with a 7-d adaptation period before and between periods. During adaptation periods, all cows received a supplement of palm fatty acid distillate (242 g/d). Dietary treatment consisted of 250 g/d of CLA supplement (78.9 g/d of CLA) or 242 g/d of palm fatty acid distillate to provide equal amounts of fatty acids. The CLA supplement contained a variety of CLA isomers (3.0% trans-8, cis-10; 3.4% cis-9, trans-11; 4.5% trans-10, cis-12; and 4.8% cis-11, trans-13 CLA). Treatments were applied 2 x/d with half of the supplement top-dressed at 0600 h and the remainder top-dressed at 1800 h. There was no overall treatment effect on dry matter intake (23.9 kg/d), milk yield (40.0 kg/d), somatic cell count (305,000), protein (2.86%), or lactose content (4.51%) or yields of these milk components. Supplementation with CLA decreased overall milk fat content and yield by 26 and 30%, irrespective of breed. The reduction of milk fat content and yield was greatest on d 21 (28 and 37%, respectively). Energy availability predicted by energy balance was improved with CLA supplementation compared with controls (3.7 vs. 7.1 Mcal/d, respectively). Respiration rate (78 breaths/min) and skin temperature (35.4 degrees C) during maximum heat load were not affected by treatment. The group receiving CLA had higher total milk fat CLA concentration (9.3 vs. 4.9 mg/g). Supplementation with CLA induced MFD and altered milk fat composition similarly between breeds and improved calculated energy balance during heat stress, but had no effect on production measures under these conditions.  相似文献   

13.
Four nonlactating, ruminally cannulated Holstein cows were used in a 4 x 4 Latin square design, balanced for residual effects, to evaluate the effects of supplementing dairy cow diets with yeast culture (Trichosporon sericeum; YC), galacto-oligosaccharides (GOS), or the mixture of YC and GOS on ruminal fermentation, microbial N supply, in situ degradation, and energy and nitrogen metabolism. Treatments were arranged in a 2 x 2 factorial as follows: 1) basal diet, 2) basal diet plus 10 g/d YC, 3) basal diet plus 2% GOS, 4) basal diet plus a mixture of 10 g/d YC and 2% GOS. Nitrogen losses in urine were lower, and retained N was higher, for cows supplemented with a mixture of YC and GOS. Ruminal pH was lower in cows supplemented with GOS alone compared with other treatments. Total VFA concentration was higher in cows fed control and GOS-supplemented diets than in those fed YC containing diets. The molar proportion of propionate was higher, and the molar proportion of acetate was lower, in cows fed control diets. Microbial N supply was higher in cows fed control diets. There were no major positive effects of supplements observed in this study. However, supplementation of a mixture of YC and GOS had a tendency for synergistic effects on N metabolism and in situ degradation of a soluble fraction of oat straw DM and CP of concentrates compared with supplementation of YC or GOS alone.  相似文献   

14.
Fifty-six Holstein cows were used in a replicated study to determine whether supplemental beta-carotene improved reproductive performance. Each of two replicates was of completely randomized design with 2 X 2 factorial arrangement of two diets with or without beta-carotene supplementation. On a dry matter basis, diet 1 was 5% hay, 20% haylage, 25% corn silage, and 50% concentrate. Diet 2 was 7.5% hay, 42.5% corn silage, and 50% concentrate. The diets contained adequate amount of vitamins A, D, and E. From 10 d postpartum until pregnancy was confirmed by rectal palpation, half the cows on each diet received a supplement of 400 mg beta-carotene per head daily. The remaining cows on each diet received a supplement of 160,000 IU vitamin A per head daily. Supplemental beta-carotene increased plasma beta-carotene throughout the trials. Median days to first ovulation, first service, days open, and mean services per conception were: 22, 77, 97, and 1.6 for cows receiving beta-carotene supplement compared with 19.5, 73, 82, and 1.9 in controls. Supplementation did not affect first service conception rate, uterine involution, or milk yield. Incidence of follicular cysts, luteal cysts, pyometra, and endometritis in cows fed beta-carotene were 11, 7, 0, and 7% compared with 8, 21, 4, and 13% in control cows. Supplemental beta-carotene did not improve the fertility of Holstein cows.  相似文献   

15.
A continuous culture study was conducted to evaluate the effect of two different yeast cultures on ruminal microbial metabolism. The treatments were a) control lactation ration, b) yeast culture 1 (YC1, Diamond-V XP) and c) yeast culture 2 (YC2, A-Max), both fed at an equivalent of 57 g/head per day. The results showed that both yeast culture products increased dry matter (DM) digestion, propionic acid production, and protein digestion compared with the control. Yeast culture 1 demonstrated an increase in molar percentage of propionic acid, a reduction in acetic acid, and a lower mean nadir (daily low) pH compared with YC2. Ruminal cultures treated with YC digested more protein and contributed less bypass N than control. Supplementing YC2 resulted in a tendency for higher microbial N/kg DM digestion than YC1. Yeast culture 1 resulted in production of rumen microbes containing less protein and more ash than YC2. These results support previous research findings that yeast culture does influence microbial metabolism, and specific yeast cultures may have different modes of action.  相似文献   

16.
《Journal of dairy science》2023,106(3):1746-1756
Yeast culture and phytonutrients are dietary supplements with distinct modes of action, and they may have additive effects on the performance of dairy cattle. The objective of this study was to investigate the effects of a preparation of phytonutrients and a yeast culture from Saccharomyces cerevisiae on lactational performance, total-tract digestibility of nutrients, urinary nitrogen losses, energy metabolism markers, and blood cells in dairy cows. Thirty-six mid-lactation Holstein cows (10 primiparous and 26 multiparous) were used in an 8-wk randomized complete block design experiment with a 2-wk covariate period, 2 wk for adaptation to the diets, and a 4-wk experimental period for data and samples collection. Following a 2-wk covariate period, cows were blocked by days in milk, parity, and milk yield and randomly assigned to 1 of 3 treatments (12 cows per treatment): basal diet supplemented with 14 g/cow per day yeast culture (YC; S. cerevisiae), basal diet supplemented with 1.0 g/cow per day phytonutrients (PN; 5.5% cinnamaldehyde, 9.5% eugenol, and 3.5% capsicum oleoresin), or basal diet supplemented with a combination of YC and PN (YCPN). Treatments were top-dressed once daily on the total mixed ration at time of feeding. Dry matter intake, milk yield, and feed efficiency were not affected by treatments. Milk composition and energy-corrected milk yield were also not affected by supplementation of YC, PN, and YCPN. There were no differences in intake or total-tract digestibility of dietary nutrients among treatments. Compared with YC, the PN and YCPN treatments tended to decrease the proportion of short-chain fatty acids in milk fat. There was an additive effect of YC and PN supplementation on urinary urea nitrogen (UUN) excretion relative to total nitrogen intake. Cows fed a diet supplemented with YCPN had lower UUN excretion than cows in YC and tended to have lower UUN excretion compared with PN. Blood monocytes count and percentage were decreased in cows fed PN and YCPN diets compared with YC. Treatments did not affect concentrations of blood β-hydroxybutyrate and total fatty acids. Overall, lactational performance, digestibility of nutrients, energy metabolism markers, and blood cells were not affected by YC, PN, or YCPN supplementation. A combination of PN and YC had an additive effect on nitrogen excretion in dairy cows.  相似文献   

17.
Feed efficiency of mid-lactation dairy cows fed yeast culture during summer   总被引:7,自引:0,他引:7  
Thirty-eight Holstein cows (26 multiparous and 12 primiparous), that averaged 105 d postpartum at the start of the experiment, were used to evaluate the feeding of yeast culture (60 g/cow daily of Diamond V XP) on production efficiency during hot summer weather. From early June until early September and after a 2-wk covariate period, cows were fed a control diet without or with 60 g of yeast culture/cow daily for 12 wk. Weekly daytime high temperatures in the free-stall barn during the 12-wk period averaged 33 degrees C (28 to 39 degrees C). Total mixed diets on a dry matter (DM) basis consisted of corn silage (28%), alfalfa hay (21%), and a concentrate mix (51%) without or with the yeast culture added to the total mixed ration at the time of feeding. Milk production (34.9 and 35.4 kg/d, for control and yeast culture treatment, respectively), 4% fat-corrected milk (31.2 and 32.0 kg/d), energy-corrected milk (ECM; 33.4 and 34.2 kg/d), and DM intake (23.1 and 22.1 kg/d) were similar for cows fed control and yeast culture diets. Percentages of milk fat (3.34 and 3.41) and true protein (2.85 and 2.87) were similar for both diets. Feed efficiency defined as kilogram of ECM/kilogram of DM intake was improved by 7% for cows fed the yeast culture. Body weights and body condition scores were similar for both groups. The results suggest that the yeast culture can improve feed efficiency of heat stressed dairy cows in midlactation.  相似文献   

18.
Experimental objectives were to determine the effects of supplemental saturated fatty acids on production, body temperature indices, and some aspects of metabolism in mid-lactation dairy cows experiencing heat stress. Forty-eight heat-stressed Holstein cows were allocated into 3 groups (n = 16/group) according to a completely randomized block design. Three treatment diets consisted of supplemental saturated fatty acids (SFA) at 0 (SFA0), 1.5 (SFA1.5), or 3.0% (SFA3) of dry matter (DM) for 10 wk. Diets were isonitrogenous (crude protein = 16.8%) and contained 1.42, 1.46, and 1.49 Mcal of net energy for lactation/kg of DM for the SFA0, SFA1.5 and SFA3 diets, respectively. The average temperature-humidity index at 0700, 1400 and 2200 h was 72.2, 84.3, and 76.6, respectively. Rectal temperatures at 1400 h were decreased with fat supplementation. Treatment did not affect dry matter intake (20.1 ± 0.02 kg/d), body condition score (2.72 ± 0.04), body weight (627 ± 16.1 kg), or calculated energy balance (1.32 ± 0.83 Mcal/d). Saturated fatty acid supplementation increased milk yield, milk fat content, and total milk solids. Increasing fat supplementation decreased plasma nonesterified fatty acids (8%) but had no effect on other energetic metabolites or hormones. In summary, supplemental SFA improved milk yield and milk fat content and yield and reduced peak rectal temperatures in mid-lactation heat-stressed dairy cows. This demonstrates the remarkable amount of metabolic heat that is “saved” by energetically replacing fermentable carbohydrates with supplemental SFA.  相似文献   

19.
Yeast (Saccharomyces cerevisiae) culture was added to a texturized calf starter at 0 (control), 1, or 2% of dry matter to determine effects on intake, growth, blood parameters, and rumen development. Seventy-five Holstein calves (38 male; 37 female) were started on the experiment at 2 +/- 1 d of age and were studied for 42 d. Starter intake was measured, and fecal scoring was conducted daily. Growth and blood parameter measurements were recorded at weekly intervals. A subset of 6 male calves (2 per treatment) was euthanized at 5 wk of age, and rumen tissue was sampled for rumen epithelial growth measurements. An additional 6 male calves were euthanized at 6 wk of age for rumen epithelial growth measurements. Inclusion of yeast culture at 2% of the starter ration significantly increased starter and total dry matter intake, average daily gain, and daily hip width change when compared with the control treatment. Average daily gain was improved by 15.6% for the 2% yeast treatment. Daily change in hip height was also significantly greater for calves receiving 2% supplemental yeast culture than for calves receiving 1%. No significant treatment differences were observed for any other variables. These data suggest that the addition of yeast culture in a dairy calf starter at 2% enhances dry matter intake and growth and slightly improves rumen development in dairy calves.  相似文献   

20.
《Journal of dairy science》2021,104(9):9715-9725
Dairy cows experiencing heat stress (HS) attempt to thermoregulate through multiple mechanisms, such as reducing feed intake and milk production and altering blood flow to increase heat dissipation. Effects of choline on energy metabolism and immune function may yield it a viable nutritional intervention to mitigate negative effects of HS. The primary objective of this experiment was to determine if supplementation of rumen-protected choline during, or before and during, an increased heat load would ameliorate the negative effects of HS on production and immune status. Heat stress was induced via an electric heat blanket model with a 3-d baseline period and 7-d HS period for all cows. Multiparous mid-lactation (208 ± 31 days in milk) Holstein cows were fed the same basal herd diet, blocked by pre-experiment milk yield, and randomly assigned to receive one of the following: (1) no rumen-protected (RP) choline (n = 7); (2) RP choline (60 g/d) via top-dress during the HS period (n = 8); or (3) RP choline (60 g/d) via top-dress during the baseline and HS periods (n = 8). Imposing HS via electric heat blanket raised respiration rate with all cows surpassing the HS threshold of 60 breaths/min. The increase in respiration rate tended to be ameliorated with either schedule of RP choline supplementation. Milk yield tended to increase when RP choline was supplemented in both the baseline period and during HS. Supplementation of RP choline tended to reduce blood fatty acid and triglyceride and tended to increase the revised quantitative insulin sensitivity check index. The role of RP choline supplementation to partially ameliorate the effects of HS should be further explored as a potential nutritional strategy to mitigate the negative consequences of HS on health and production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号