首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fat is present in milk as droplets of triglycerides surrounded by a complex membrane derived from the mammary epithelial cell called milk fat globule membrane (MFGM). Although numerous studies have been published on human or bovine MFGM proteins, to date few studies exist on MFGM proteins from goat milk. The objective of this study was thus to investigate the protein composition of the goat MFGM. Milk fat globule membrane proteins from goat milk were separated by 6% and 10% sodium dodecyl sulfate-PAGE and were Coomassie or periodic acid-Schiff stained. Most of MFGM proteins [mucin-1, fatty acid synthase, xanthine oxidase, butyrophilin, lactadherin (MFG EGF-8, MFG-E8), and adipophilin] already described in cow milk were identified in goat milk using peptide mass fingerprinting. In addition, lectin staining provided a preliminary characterization of carbohydrate structures occurring on MFGM proteins from goat milk depending on αS1-casein genotype and lactation stage. We provide here first evidence of the presence of O-glycans on fatty acid synthase and xanthine oxidase from goat milk. A prominent difference between the cow and the goat species was demonstrated for lactadherin. Indeed, whereas 2 polypeptide chains were easily identified by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight analysis within bovine MFGM proteins, lactadherin from goat milk consisted of a single polypeptide chain. Another striking observation was the presence of caseins associated with MFGM preparations from goat milk, whereas virtually no caseins were found in MFGM extracts from bovine milk. Taken together, these observations strongly support the existence of a singular secretion mode previously hypothesized in the goat.  相似文献   

2.
《Journal of dairy science》2023,106(4):2289-2302
Saanen goats are among the major dairy goats in China. In present study, variation of milk fat globule membrane proteins profile of Saanen goat milk caused by geographic location was investigated using sequential window acquisition of all theoretical fragment ions data-independent acquisition mass spectrometry based proteomic approach. A total of 1,001 proteins were quantified in goat milk collected from 3 habitats of China [Guangdong (GD); Inner Mongolia (IM); Shannxi (SX)]. Most of the proteins were found to act cellular process of biological process, cell of cellular component, binding of molecular function after Gene Ontology annotation and metabolic of pathway indicated by Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Differentially expressed proteins (DEP) for GD versus IM, GD versus SX, IM versus SX were identified to be 81, 91, and 44, respectively. Gene Ontology enrichment analysis showed that the greatest DEP for 3 groups (GD vs. IM, GD vs. SX, IM vs. SX) were cellular process, cellular process and organonitrogen compound biosynthetic process/immune system process for biological process. For cellular component, the largest number of DEP for 3 comparison groups were organelle, organelle and organelle/intracellular. For molecular function, DEP of the 3 comparison groups were expressed most in structural molecule activity, binding and anion binding, respectively. Pathways with the majority of DEP were ribosome, systemic lupus erythematosus and primary immunodeficiency/systemic lupus erythematosus/amoebiasis/PI3K-Akt signaling pathway for GD versus IM, GD versus SX and IM versus SX, severally. Protein-protein interaction network analysis showed that DEP interacted most were 40S ribosomal protein S5, fibronectin and Cytochrome b-c1 complex subunit 2, mitochondrial for GD versus IM, GD versus SX and IM versus SX, separately. Data may give useful information for goat milk selection and milk authenticity in China.  相似文献   

3.
综述了乳脂肪球膜的组成、分离提取方法与应用的研究进展,对有效利用乳脂肪球膜资源提供参考。  相似文献   

4.
Shotgun proteomics, using amine-reactive isobaric tags (iTRAQ), was used to quantify protein changes in milk fat globule membranes (MFGM) that were isolated from d 1 colostrum and compared with MFGM from d 7 milk. Eight Holstein cows were randomly assigned to 2 groups of 4 cow sample pools for a simple replication of this proteomic analysis using iTRAQ. The iTRAQ labeled peptides from the experiment sample pools were fractionated by strong cation exchange chromatography followed by further fractionation on a microcapillary high performance liquid chromatograph connected to a nanospray-tandem mass spectrometer. Data analysis identified 138 bovine proteins in the MFGM with 26 proteins upregulated and 19 proteins downregulated in d 7 MFGM compared with colostrum MFGM. Mucin 1 and 15 were upregulated greater than 7-fold in MFGM from d 7 milk compared with colostrum MFGM. The tripartite complex of proteins of adipophilin, butyrophilin, and xanthine dehydrogenase were individually upregulated in d 7 MFGM 3.4-, 3.2-, and 2.6-fold, respectively, compared with colostrum MFGM. Additional proteins associated with various aspects of lipid transport synthesis and secretion such as acyl-CoA synthetase, lanosterol synthase, lysophosphatidic acid acyltransferase, and fatty acid binding protein were upregulated 2.6- to 5.1-fold in d 7 MFGM compared with colostrum MFGM. In contrast, apolipoproteins A1, C-III, E, and A-IV were downregulated 2.6- to 4.3-fold in d 7 MFGM compared with colostrum MFGM. These data demonstrate that quantitative shotgun proteomics has great potential to provide new insights into mammary development.  相似文献   

5.
Evidence for the asymmetric distribution of phospholipids in the milk fat globule membrane (MFGM) was obtained by applying 3 washing processes using aqueous solutions with different degrees of stringency (mild, intermediate, and intensive) to milk fat globule (MFG) surfaces in simulated milk ultrafiltrate buffer. We detected no change in the amount of cholesterol after the mild washing process; however, intensive washing yielded a relative enrichment of surface cholesterol with concomitant damage to the outer bilayer of the MFGM. This finding supports the hypothesis of repartitioning of cholesterol on MFG surfaces during mechanical treatments. An updated model system of lipid organization was developed according to the results of relative depletion of individual phospholipids, as analyzed by HPLC.  相似文献   

6.
Ye A  Cui J  Singh H 《Journal of dairy science》2011,94(6):2762-2770
The influence of gastric proteolysis on the physicochemical characteristics of milk fat globules and the proteins of the milk fat globule membrane (MFGM) in raw milk and cream was examined in vitro in simulated gastric fluid (SGF) containing various pepsin concentrations at pH 1.6 for up to 2 h. Apparent flocculation of the milk fat globules occurred in raw milk samples incubated in SGF containing pepsin, but no coalescence was observed in either raw milk samples or cream samples. The changes in the particle size of the fat globules as a result of the flocculation were dependent on the pepsin concentration. Correspondingly, the physical characteristics of the fat globules and the composition of the MFGM proteins in raw milk changed during incubation in SGF containing pepsin. The major MFGM proteins were hydrolyzed at different rates by the pepsin in the SGF; butyrophilin was more resistant than xanthine oxidase, PAS 6, or PAS 7. Peptides with various molecular weights, which altered with the time of incubation and the pepsin concentration, were present at the surfaces of the fat globules.  相似文献   

7.
For the last 15 yr, a great deal of knowledge has been accumulated on health beneficial factors, protein and nonprotein, of bovine milk fat globule membrane (MFGM). Among the health-beneficial components of the MFGM are cholesterolemia-lowering factor, inhibitors of cancer cell growth, vitamin binders, inhibitor of Helicobacter pylori, inhibitor of beta-glucuronidase of the intestinal Escherichia coli, xanthine oxidase as a bactericidal agent, butyrophilin as a possible suppressor of multiple sclerosis, and phospholipids as agents against colon cancer, gastrointestinal pathogens, Alzheimer's disease, depression, and stress. All of the above compel us to consider bovine MFGM as a potential nutraceutical.  相似文献   

8.
The isolation of milk fat globule membrane (MFGM) material from buttermilk on a commercial scale has provided a new ingredient rich in phospholipids and sphingolipids. An MFGM-derived phospholipid fraction was used to produce liposomes via a high-pressure homogenizer (Microfluidizer). This technique does not require the use of solvents or detergents, and is suitable for use in the food industry. The liposome dispersion had an average hydrodynamic diameter of 95 nm, with a broad particle-size distribution. Increasing the number of passes through the Microfluidizer, increasing the pressure, or reducing the phospholipid concentration all resulted in a smaller average liposome diameter. Changing these variables did not have a significant effect on the polydispersity of the dispersion. Electron microscopy showed that the dispersions formed had a range of structures, including unilamellar, multilamellar, and multivesicular liposomes. The composition of the MFGM phospholipid material is different from that of the phospholipids usually used for liposome production in the pharmaceutical and cosmetic industries. The MFGM-derived fraction comprises approximately 25% sphingomyelin, and the fatty acids are primarily saturated and monounsaturated. These differences are likely to affect the properties of the liposomes produced from the phospholipid material, and it may be possible to exploit the unique composition of the MFGM phospholipid fraction in the delivery of bioactive ingredients in functional foods.  相似文献   

9.
The nutritional value and characterization of minor milk components on mammalian immune function are not fully understood. The aim of this research was to test the ability of a milk fat globule membrane (MFGM) isolate to modulate murine immune function in vitro, by studying its effects on splenocyte proliferation, apoptosis, and cytokine production. Proliferation of spleen cells was not affected by the MFGM isolate; however, in the presence of polyclonal activators, the MFGM isolate suppressed cell proliferation. Results obtained by flow cytometry did not support programmed cell death as the cause of the MFGM immune-modulating capacity. A mode of suppression on the splenocyte activation process was suggested from a marked decrease in the production of IFN-γ and tumor necrosis factor-α cytokines, typical indicators of immune cell activation. The effect of MFGM on IL-4 secretion was significantly less than that for the other 2 cytokines. The activity exerted by the MFGM over concanavalin A-stimulated cells differed from that observed in cells treated with lipopolysaccharide, suggesting a different mode of action depending on the activator used. These results indicate the potential of MFGM extracts as functional ingredients with bioactive modulating capacity.  相似文献   

10.
Emulsifying properties of milk fat globule membrane (MFGM) materials isolated from reconstituted buttermilk (BM; i.e., BM-MFGM) and BM whey (i.e., whey-MFGM), individually or in mixtures with BM powder (BMP) were compared with those of a commercial dairy ingredient (Lacprodan PL-20; Arla Foods Ingredients Group P/S, Viby, Denmark), a material rich in milk polar lipids and proteins. The particle size distribution, viscosity, interfacial protein, and polar lipids load of oil-in-water emulsions prepared using soybean oil were examined. Pronounced droplet aggregation was observed with emulsions stabilized with whey-MFGM or with a mixture of whey-MFGM and BMP. No aggregation was observed for emulsions stabilized with BM-MFGM, Lacprodan PL-20, or a mixture of BM-MFGM and BMP. The surface protein load and polar lipids load were lowest in emulsions with BM-MFGM. The highest protein load and polar lipids load were observed for emulsions made with a mixture of whey-MFGM and BMP. The differences in composition of MFGM materials, such as in whey proteins, caseins, MFGM-specific proteins, polar lipids, minerals, and especially their possible interactions determine their emulsifying properties.  相似文献   

11.
Fragments originating from the milk fat globule membrane (MFGM), which is rich in polar lipids and membrane-specific proteins, are gaining interest for their functional and nutritional properties. Acid buttermilk cheese whey was used as a source for MFGM purification, because its MFGM content is more than 5 times higher than that of standard rennet whey. Because polar lipids are the main constituent of the MFGM and only occur in membranous structures, the polar lipid content was taken as a parameter for the total MFGM fragment content. The process of thermocalcic aggregation was evaluated on its recovery of MFGM fragments in the pellet. This method, originally intended for whey clarification and defatting, is a combination of calcium addition, a pH increase, and a thermal treatment. The influence of pH (6.5 to 8), temperature (40 to 70°C), and calcium concentration (0.1 to 0.24 g/100 g) on the pellet mass and dry matter (DM) content and on recovery of protein and polar lipids (and thus indirectly on MFGM fragments) was investigated by means of a response surface Box-Behnken orthogonal design. Reduced quadratic models were fit to the experimental data and were found to be highly significant. No outliers were observed. The recovery of MFGM fragments was found to be highly dependent on the pH, and less dependent on temperature and calcium addition. Next to MFGM proteins, whey proteins were also found to be involved in the formation of aggregates. Optimal conditions were found at 55°C, pH 7.7, and 0.205 g of calcium/L of whey. Under these conditions, 91.0% of the whey polar lipids were recovered in a firm and compact pellet of only 7.86% of the original whey mass, with a polar lipid concentration of 8.34% on pellet DM. Washing with water and centrifugation of the pellet was successful because after one washing step, virtually all sugars were removed, whereas 75.9% of the whey polar lipids could still be recovered. As such, the polar lipid content of the washed pellet increased to 10.70% on a DM basis. However, a second washing step resulted in serious losses of MFGM material.  相似文献   

12.
Lipoprotein lipase (LPL) activity and free fatty acid levels were studied in freshly milked, uncooled milk from individual Danish Holstein or Jersey cows, or after storage for up to 24 h at either a cooling temperature (4°C) or at the milking temperature (31°C). Upon cooling for up to 24 h, LPL activity increased in the cream phase, whereas the activity in the skim milk was steady, as observed for Jersey cows, or increased, as seen for the Holsteins. Storage at 31°C decreased the LPL activity in both the cream phase and the skim milk phase. The increase in free fatty acid levels was found to depend on LPL activity, incubation temperature, substrate availability, and incubation time. Furthermore, the migration of milk proteins between the skim milk phase and the cream phase upon cooling of milk from Jersey cows or from Danish Holstein cows was studied using proteomic methods involving 2-dimensional gel electrophoresis and mass spectrometry. Proteins associated with the milk fat globules were isolated from all milk fractions and analyzed. Major changes in the distributions of proteins between the skim milk phase and the cream phase were observed after cooling at 4°C for 4 h, where a total of 29 proteins between the 2 breeds was found to change their association with the milk fat globule membrane (MFGM) significantly. Among these, the MFGM proteins adipophilin, fatty acid-binding protein, and lactadherin, as well as the non-MFGM proteins β-casein, lactoferrin, and heat shock protein-71, were identified. Adipophilin, lactadherin, and lactoferrin were quantitatively more associated with the MFGM upon cold storage at 4°C, whereas β-casein, fatty acid-binding protein, and heat shock protein-71 were found to be less associated with the MFGM upon cold storage.  相似文献   

13.
The association of beta-lactoglobulin (beta-LG) and alpha-lactalbumin (alpha-LA) with milk fat globule membrane (MFGM), when whole milk was treated by high pressure in the range 100 to 800 MPa, was investigated using sodium dodecyl sulfate (SDS)-PAGE under reducing and nonreducing conditions. In SDS-PAGE under reducing conditions, beta-LG was observed in the MFGM material isolated from milk treated at 100 to 800 MPa for 30 min, and small amounts of alpha-LA and kappa-casein were also observed at pressures >600 MPa for 30 min. However, these proteins were not observed in SDS-PAGE under nonreducing conditions. These results indicate that beta-LG and alpha-LA associated with MFGM proteins via disulfide bonds during the high-pressure treatment of whole milk. The amount of beta-LG associated with the MFGM increased with an increase in pressure up to 800 MPa and with increasing time of pressure treatment. The maximum value for beta-LG association with the MFGM was approximately 0.75 mg/g of fat. Of the major original MFGM proteins, no change in butyrophilin was observed during the high-pressure treatment of whole milk, whereas xanthine oxidase was reduced to some extent beyond 400 MPa. In contrast to the behavior during heat treatment, PAS 6 and PAS 7 were stable during high-pressure treatment, and they remained associated with the MFGM.  相似文献   

14.
The proteins and polar lipids present in milk fat globule membrane (MFGM) fragments are gaining attention for their technological and nutritional properties. These MFGM fragments are preferentially enriched in side streams of the dairy industry, like butter serum, buttermilk, and whey. The objective of this study was to recover MFGM fragments from whey by tangential filtration techniques. Acid buttermilk cheese whey was chosen as a source for purification by tangential membrane filtration because it is relatively rich in MFGM-fragments and because casein micelles are absent. Polyethersulfone and cellulose acetate membranes of different pore sizes were evaluated on polar lipid and MFGM-protein retention upon filtration at 40°C. All fractions were analyzed for dry matter, ash, lipids, proteins, reducing sugars, polar lipid content by HPLC, and for the presence of MFGM proteins by sodium dodecyl sulfate-PAGE. A fouling coefficient was calculated. It was found that a thermocalcic aggregation whey pretreatment was very effective in the clarification of the whey, but resulted in low permeate fluxes and high retention of ash and whey proteins. By means of an experimental design, the influence of pH and temperature on the fouling and the retention of polar lipids (and thus MFGM fragments), proteins, and total lipids upon microfiltration with 0.15 μM cellulose acetate membrane was investigated. All models were highly significant, and no outliers were observed. By increasing the pH from 4.6 to 7.5, polar lipid retention at 50°C increased from 64 to 98%, whereas fouling of the filtration membrane was minimized. A 3-step diafiltration of acid whey under these conditions resulted in a polar lipid concentration of 6.79 g/100 g of dry matter. As such, this study shows that tangential filtration techniques are suited for the purification of MFGM fragments.  相似文献   

15.
Buttermilk, the by-product from butter manufacture, has gained much attention lately because of the application potential of its milk fat globule membrane (MFGM) components as health ingredients. Microfiltration (MF) has been studied for buttermilk fractionation because of its ability to separate particles from dissolved solutes. However, the presence in this by-product of skim milk solids, especially casein micelles, restricts concentration of MFGM. The use of cream washed with skim milk ultrafiltrate to produce buttermilk with lower casein content was studied as well as fractionation of this buttermilk by MF. Results have shown that washing the cream prior to churning yields buttermilk with 74% less protein than normal cream buttermilk. Analysis of the protein profile of washed cream buttermilk revealed that caseins and whey proteins were the main classes of proteins removed. The MF of washed cream buttermilk resulted in permeation fluxes 2-fold higher than with normal cream buttermilk. The second separation of the cream induced high losses of phospholipids in the skim phase. However, retention of remaining phospholipids in washed cream buttermilk by the MF membrane was higher resulting in a phospholipids concentration factor 66% higher than that of normal cream buttermilk. The results presented in this study highlight the impact of casein micelles on the separation of MFGM components as well as their effect on permeation flux during MF.  相似文献   

16.
目的:制备可添加于婴儿液态配方乳的乳脂肪球膜磷脂-维生素A脂质体,并优化其制备参数。方法:本实验采用薄膜水合-高压均质法,应用乳脂肪球膜磷脂为膜材,制备维生素A脂质体,在单因素实验基础之上,探讨制备脂质体过程中磷脂浓度、主药与磷脂比例、胆固醇与磷脂比例、维生素E占磷脂百分比浓度、反应温度等制备因素对形成脂质体后包封率的影响规律。采用二次旋转正交组合实验方法设计实验,经SAS软件与Matlab软件处理数据得到配方原料指标和反应温度对脂质体包封率的影响。结果:优化得到制备脂质体工艺参数:磷脂浓度7.43%,磷脂与主药比例28.95∶1,磷脂与胆固醇比例为6.53∶1,维生素E占磷脂百分比浓度为0.83%,反应温度59.58℃,得到优化后最高包封率为88.77%,脂质体在扫描电子显微镜下观察,其超微结构为球状囊泡。结论:本实验首次以乳脂肪球膜磷脂作为膜材包埋维生素A制备脂质体,将传统的薄膜水合法与高压均质法相结合,成功制备出可添加于婴儿食品的可食性脂质体。  相似文献   

17.
The aim of the present study was to study the effect of milking cows 4 times daily on free fatty acids (FFA) in the milk compared with milking twice daily. An experiment was performed during 2 wk in which half udders in 11 cows were milked 2 or 4 times daily. Milk yield was measured, and milk was analyzed for fat content, FFA, fatty acid composition, fat globule size, and activity of γ-glutamyl transpeptidase. Concentration of FFA was greater (1.49 mEq/100 g of fat) in milk from half udders milked 4 times daily than in milk from the half udders milked twice daily (1.14 mEq/100 g of fat). Further, it was noted that milk from the half udder milked 4 times daily contained milk fat globules with larger average diameters. Increased milking frequency increased milk yield by 9% compared with the udder half milked twice daily, but fat content and fat yield were not affected. The results are of importance for further understanding the mechanisms behind the increased content of FFA that is frequently observed in automatic milking systems.  相似文献   

18.
《Journal of dairy science》2021,104(12):12207-12215
This study was designed to provide novel insights into milk fat globule membrane (MFGM) proteins in donkey colostrum (DC) and bovine colostrum (BC) using quantitative proteomics. In total, 179 (DC) and 195 (BC) MFGM proteins were characterized, including 71 shared, 108 DC-specific, and 124 BC-specific proteins. Fifty-one shared proteins were selected as differentially expressed MFGM proteins, including 21 upregulated and 30 downregulated proteins in DC. Gene ontology analysis showed that these proteins were mainly enriched in cellular components, including the extracellular exosome, extracellular space, and plasma membrane. Additionally, they were further involved in metabolic pathways, including cholesterol metabolism, the peroxisome proliferator-activated receptor signaling pathway, and purine metabolism. Furthermore, several key protein factors with high connectivity were identified via protein–protein interaction analysis. These results provide more comprehensive knowledge of differences in the biological properties of MFGM proteins in DC and BC as well as pave the way for future studies of the nutritional and functional requirements of these important ingredients toward the development of dairy products based on multiple milk sources.  相似文献   

19.
Although buffalo milk is the second most produced milk in the world, and of primary nutritional importance in various parts of the world, few studies have focused on the physicochemical properties of buffalo milk fat globules. This study is a comparative analysis of buffalo and cow milk fat globules. The larger size of buffalo fat globules, 5 vs. 3.5 μm, was related to the higher amount of fat in the buffalo milks: 73.4 ± 9.9 vs. 41.3 ± 3.7 g/kg for cow milk. Buffalo milks contained significantly lower amount of polar lipids expressed per gram of lipids (0.26% vs. 0.36%), but significantly higher amount of polar lipids per litre of milk (+26%). Buffalo and cow milk fat globule membranes contain the same classes of polar lipids; phosphatidylethanolamine, sphingomyelin (SM) and phosphatidylcholine (PC) being the main constituents. A significant higher percentage of PC and lower percentage of SM were found for buffalo milks. The fatty acid analysis revealed that saturated fatty acids, mainly palmitic acid, trans fatty acids, linolenic acid (ω3) and conjugated linolenic acid were higher in buffalo milk than in cow milk. Such results will contribute to the improvement of the quality of buffalo milk-based dairy products.  相似文献   

20.
《Journal of dairy science》2023,106(5):3086-3097
The relative immaturity of the infant digestive system has the potential to affect the bioavailability of dietary lipids, proteins, and their digested products. We performed a lipidomic analysis of a commercial bovine milk fat globule membrane ingredient (MFGMi) and determined the profile of lipids and proteins in the bioaccessible fraction after in vitro digestion of both the ingredient and whey-casein-based infant formula without and with MFGMi. Test materials were digested using a static 2-phase in vitro model, with conditions simulating those in the infant gut. The extent of digestion and the bioaccessibility of various classes of neutral and polar lipids were monitored by measuring a wide targeted lipid profile using direct infusion–mass spectrometry. Digestion of abundant proteins in the ingredient and whey–casein infant formula containing the ingredient was determined by denaturing PAGE with imaging of Coomassie Brilliant Blue stained bands. Cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, and phosphatidylethanolamines in MFGMi were hydrolyzed readily during in vitro digestion, which resulted in marked increases in the amounts of free fatty acids and lyso-phospholipids in the bioaccessible fraction. In contrast, sphingomyelins, ceramides, and gangliosides were largely resistant to simulated digestion. Proteins in MFGMi and the infant formulas also were hydrolyzed efficiently. The results suggest that neutral lipids, cholesterol esters, phospholipids, and proteins in MFGMi are digested efficiently during conditions that simulate the prandial lumen of the stomach and small intestine of infants. Also, supplementation of whey-casein-based infant formula with MFGMi did not appear to alter the profiles of lipids and proteins in the bioaccessible fraction after digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号