首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The key objectives of this study were to investigate differences in milking characteristics and udder health between Holstein-Friesian (HF), Jersey (J), and Jersey × Holstein-Friesian (F1) cows and to determine possible associations between milking characteristics and udder health. Records were available from 329 lactations (162 cows): 65 HF, 48 J, and 49 F1. Data included lactation mean milk yield, somatic cell score (SCS), incidence of mastitis, average milk flow (AMF), peak milk flow (PMF), and milking duration (MD). Breed group had a significant effect on milk yield and was higher with the HF cows (18.0 kg/d) compared with the J cows (14.2 kg/d). Udder health (SCS and incidence of mastitis at least once during lactation) were similar across the breed groups. Average milk flow was greater with the HF cows (1.36 kg/min) compared with the J cows (1.09 kg/min). Peak milk flow also tended to greater with the HF cows. No difference in MD was observed between the breed groups. The performance of the F1 cows tended to be similar to the mid-parent (breed) mean for udder health and MD, but heterosis was evident for milk yield, AMF, and PMF. Correlations examined showed that phenotypic milk yield was negatively associated with SCS. Increased milk yield was synonymous with increased AMF, PMF, and MD. Correlations between SCS and milking characteristics were weak. Correlations also showed that cows with low AMF and PMF had extended MD. Therefore, no difference in udder health was observed between HF, J, or F1 cows. The fact that higher yielding animals exhibit faster milking speeds was confirmed; however, no difference in MD was observed between the breed groups. Such findings indicate that regularity in the milking process will be maintained within mixed-breed herds.  相似文献   

2.
The objective of this study was to determine if an association existed among body condition score (BCS), body weight (BW), and udder health, as indicated by somatic cell score (SCS) and cases of clinical mastitis (CM). The data consisted of 2,635 lactations from Holstein-Friesian (n = 523) and Jersey (n = 374) cows in a seasonal calving pasture-based research herd between the years 1986 and 2000, inclusive. Increased BCS at calving was associated with reduced SCS in first- and second-parity cows, and greater SCS in cows of third parity or greater. This relationship persisted for most BCS traits throughout lactation. Body weight was positively associated with SCS, although the effect was greater in Jersey cows than in Holstein-Friesians. Increased BCS and BW loss in early lactation were associated with lower SCS and a reduced probability of a high test-day SCC. Body condition score was not significantly related to CM with the exception of a curvilinear relationship between the daily rate of BCS change to nadir and CM in early lactation. Several BW variables were positively associated with a greater likelihood of CM. Nevertheless, most associations with udder health lacked biological significance within the ranges of BCS and BW generally observed on-farm. Results are important in assuring the public that modern dairy systems, where cows are subjected to substantial amounts of BCS mobilization in early lactation, do not unduly compromise cow udder health.  相似文献   

3.
Dairy cow longevity combines all functional traits and is thought to be especially important in organic production, which is an established, increasing part of Swedish dairy production, representing approximately 6% of the market. The aim of this study was to compare dynamics in culling reasons between organic and conventional production and to analyze genotype by environment interactions for longevity. The data contained information from all organic herds with information available from official recording (n = 402) and from approximately half of the conventional herds (n = 5,335). Records from Swedish Holsteins (n = 155,379) and Swedish Red cows (n = 160,794) that had their first calf between January 1998 and September 2003 were included. The opportunity period for longevity was at least 6 yr. Six longevity traits were defined: length of productive life; survival through first, second, and third lactations; fertility-determined survival; and udder health-determined survival. Twenty codes were used to describe the cause of culling, and these were divided into 8 groups: udder health, low fertility, low production, leg problems, metabolic diseases, other diseases, other specified causes, and unspecified cause. The main reason for culling cows in organic herds was poor udder health, whereas for cows in conventional herds it was low fertility. Furthermore, the shift in main culling reason from fertility, which was most common in first lactation regardless of production system, to udder health occurred at a lower age in organic production. Heritabilities and genetic correlations for the longevity traits expressed in organic and conventional herds were estimated from a bivariate animal model. The genetic correlations were close to unity (>0.88), except for fertility-determined survival in the Swedish Red breed (0.80). Heritabilities were low to moderate, and no clear pattern was identified for production system or breed. In general, the results indicate that farmers’ culling criteria differ between organic and conventional production. Different preferences may influence the need for alternative selection indexes for organic production, with different weightings of traits, or a separate breeding program. However, no genotype by environment interaction of importance was found between the production systems.  相似文献   

4.
The objective was to study genetic (co)variance components for binary clinical mastitis (CM), test-day protein yield, and udder health indicator traits [test-day somatic cell score (SCS) and type traits of the udder composite] in the course of lactation with random regression models (RRM). The study used a data set from selected 15 large-scale contract herds including 26,651 Holstein cows. Test-day production and CM data were recorded from 2007 to 2012 and comprised parities 1 to 3. A longitudinal CM data structure was generated by assigning CM records to adjacent official test dates. Bivariate threshold-linear RRM were applied to estimate genetic (co)variance components between longitudinal binary CM (0 = healthy; 1 = diseased) and longitudinal Gaussian distributed protein yield and SCS test-day data. Heritabilities for liability to CM (heritability ~0.15 from 0 to 305 d after calving) were slightly higher than for SCS for corresponding days in milk (DIM) in the course of lactation. Daily genetic correlations between CM and SCS were moderate to high (genetic correlation ~0.70), but substantially decreased at the very end of lactation. Genetic correlations between CM at different test days were close to 1 for adjacent test days, but were close to zero for test days far apart. Daily genetic correlations between CM and protein yield were low to moderate. For identical DIM (e.g., DIM 20, 160, and 300), genetic correlations were −0.03, 0.11, and 0.18, respectively, and disproved pronounced genetic antagonisms between udder health and productivity. Correlations between estimated breeding values (EBV) for CM from the RRM and official EBV for linear type traits of the udder composite, including EBV from 74 influential sires (sires with >60 daughters), were −0.31 for front teat placement, −0.01 for rear teat placement, −0.31 for fore udder attachment, −0.32 for udder depth, and −0.08 for teat length. Estimated breeding values for CM from the RRM were compared with EBV from a multiple-trait model and with EBV from a repeatability model. For test days covering an identical time span and on a lactation level, correlations between EBV from RRM, multiple-trait model, and repeatability model were close to 1. Most relevant results suggest the routine application of threshold RRM to binary CM to (1) allow selection of genetically superior sires for distinct stages of lactation and (2) achieve higher selection response in CM compared with selection strategies based on indicator type traits or based on the indicator-trait SCS.  相似文献   

5.
The objective of this study was to quantify differences in udder health and milking characteristics among the Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) genotypes, while considering the effect of feeding system and parity. A total of 749 lactations were available for inclusion in the analysis from 309 cows in 1 research herd over 5 yr. Somatic cell score (SCS; i.e., natural logarithm of somatic cell count) was used as an indicator of udder health. Milking duration (seconds/d) was defined as the sum of the milking duration in the a.m. and milking duration in the p.m. Average daily milk flow (AMF; kg/min) was defined as total daily milk yield divided by total daily milking duration. Peak milk flow (kg/min) was defined as the maximum rate of milk flow achieved in the daily milking process. The SCS of the NRF (10.31 units) and MB (10.47 units) breeds was less than that of the HF (10.96 SCS units), whereas that of the NM (10.88 SCS units), MBX (10.93 SCS units), and NMX (10.84 SCS units) breeds was similar to that of the HF. The MBX and NMX had the greatest AMF (1.56 and 1.54 kg/min, respectively) and the NM had the lowest (1.33 kg/min). Animals offered a high concentrate diet had greater AMF, peak milk flow, and milking duration. The differences expressed by the divergent breeds may reflect differences in the past breeding goals among the breeds, namely the inclusion of traits aimed at maintaining or improving udder health.  相似文献   

6.
Genetic, environmental, and phenotypic correlations among average somatic cell score (SCS) at different stages of lactation and conformation traits were estimated. Data consisted of the lactational average of SCS at 150 (SCS150) and 305 (SCS305) d in milk and 19 conformation traits recorded on 57,154 primiparous Holstein cows, that calved from 1996 to 2009 in 119 herds in Iran. Variance components were estimated using the restricted maximum likelihood procedure based on multiple-trait animal models. Udder depth (−0.32), fore udder attachment (−0.22), and udder width (0.34) showed moderate genetic correlation with SCS150. Heart girth (0.17), body depth (0.14), chest width (0.26), and angularity (0.19), showed modest genetic correlation with SCS150. The estimated heritabilities for SCS150 and SCS305 were 0.06 and 0.08, respectively. The heritability of the conformation traits ranged from 0.09 to 0.29. Genetic and environmental correlations between SCS150 and SCS305 were very high (means ± SE; 0.99 ± 0.01 and 0.89 ± 0.01, respectively), which indicates that recording SCS over a shorter period of lactation is an alternative approach for involving many herds in SCS data collection. The low heritability of SCS indicated that indirect selection for some of udder and body traits might be helpful to reduce the SCS. Additionally, selection for udder traits may help reduce SCS in developing countries where SCS data are sparsely recorded.  相似文献   

7.
Jersey (JE) × Holstein (HO) crossbred cows (n = 76) were compared with pure HO cows (n = 73) for 305-d milk, fat, and protein production, somatic cell score (SCS), clinical mastitis, lifetime production, and body measurements during their first 3 lactations. Cows were in 2 research herds at the University of Minnesota and calved from September 2003 to June 2008. Best prediction was used to determine actual production for 305-d lactations as well as lifetime production (to 1,220 d in the herd after first calving) from test-day observations. During first lactation, JE × HO cows and pure HO cows were not significantly different for fat plus protein production; however, JE × HO cows had significantly lower fat plus protein production during second (−25 kg) and third (−51 kg) lactation than pure HO cows. Nevertheless, JE × HO cows were not significantly different from pure HO cows for lifetime production or lifetime SCS. The JE × HO cows were not significantly different from pure HO cows for SCS and clinical mastitis during first and second lactations; however, JE × HO cows tended to have higher SCS (3.79) than pure HO cows (3.40), but significantly lower (−23.4%) clinical mastitis during third lactation. The JE × HO cows had significantly less hip height, smaller heart girth, less thurl width, and less pin width than pure HO cows during the first 3 lactations. Furthermore, JE × HO cows had significantly less udder clearance from the ground and significantly greater distance between the front teats than pure HO cows during their first 3 lactations.  相似文献   

8.
Genetic parameters of adaptive immune response traits in Canadian Holsteins   总被引:1,自引:0,他引:1  
The objectives of this study were to estimate genetic parameters of cell-mediated (CMIR) and antibody-mediated (AMIR) immune response (IR) traits of Holstein cattle on a national scale and to associate estimated breeding values of CMIR, AMIR, and overall IR with routinely evaluated traits in Canada. In collaboration with the Canadian Bovine Mastitis Research Network, 445 Holstein cows from 42 herds across Canada were immunized to measure delayed-type hypersensitivity as an indicator of CMIR and serum antibody for AMIR to putative type 1 and type 2 test antigens, respectively. Primary (d 14) and secondary (d 21) AMIR were measured for both IgG1 and IgG2. A series of uni- and bivariate linear animal models were used to estimate genetic parameters and breeding values for CMIR and the 4 AMIR traits. The models included the fixed effects of parity and stage of lactation and the random effects of herd-technician, animal, and residual. Heritability of CMIR was 0.19 (SE=0.10) and for AMIR traits ranged from 0.16 to 0.41 (SE=0.09-0.11) depending on time and antibody isotype. The genetic correlations between CMIR and AMIR were negative and ranged from -0.13 to -0.45 (SE=0.32-0.46). The results indicate adaptive immune response traits are moderately heritable and provide a potential for genetic selection. The negative genetic correlations between CMIR and AMIR indicate the importance of considering both traits in breeding for overall disease resistance. Significant beneficial associations between the reproductive traits number of services and first service to conception were found, which may indicate these reproductive traits would improve with genetic selection for enhanced immune response.  相似文献   

9.
Genetic and phenotypic parameters for Mexican Holstein cows were estimated for first- to third-parity cows with records from 1998 to 2003 (n = 2,971-15,927) for 305-d mature equivalent milk production (MEM), fat production (MEF), and protein production (MEP), somatic cell score (SCS), subsequent calving interval (CAI), and age at first calving (AFC). Genetic parameters were obtained by average information matrix-REML methodology using 6-trait (first-parity data) and 5-trait (second- and third-parity data) animal models. Heritability estimates for production traits were between 0.17 ± 0.02 and 0.23 ± 0.02 for first- and second-parity cows and between 0.12 ± 0.03 and 0.13 ± 0.03 for third-parity cows. Heritability estimates for SCS were similar for all parities (0.10 ± 0.02 to 0.11 ± 0.03). For CAI, estimates of heritability were 0.01 ± 0.05 for third-parity cows and 0.02 ± 0.02 for second-parity cows. The heritability for AFC was moderate (0.28 ± 0.03). No unfavorable estimates of correlations were found among MEM, MEF, MEP, CAI, and SCS. Estimates of environmental and phenotypic correlations were large and positive among production traits; favorable between SCS and CAI; slightly favorable between MEM, MEF, and MEP and SCS, between AFC and SCS, and between SCS and CAI; and small but unfavorable between production traits and CAI. Estimates of genetic variation and heritability indicate that selection would result in genetic improvement of production traits, AFC, and SCS. Estimates of both heritability and genetic variation for CAI were small, which indicates that genetic improvement would be difficult.  相似文献   

10.
The objectives of this study were to compare Holstein (HO), Brown Swiss (BS), and their crosses for milk, fat, and protein yields, somatic cell score (SCS), days open (DO), and age at first calving (AFC), and to estimate the effects of heterosis and recombination. First through fifth lactation records were obtained from 19 herds milking crosses among BS and HO. The edited data set included 6,534 lactation records from 3,473 cows of the following breed combinations: 2,125 pure HO, 926 pure BS, 256 BS sire × HO dam (SH), 105 backcrosses to BS (SX), 18 HO sire × BS dam, and 43 backcrosses to HO. Least squares means for daily milk, fat, and protein yields, mature-equivalent milk, fat, and protein yields, SCS, DO, and AFC were calculated for breed combinations with a model that included fixed effects of age within parity (except for AFC), days in milk for daily yield and SCS, herd-year-season of calving, and breed combination. Cow and error were random effects. Breed combination was replaced with regressions on coefficients for heterosis and recombination in a second analysis. Last, data were analyzed with a 5-trait animal model that included a single pedigree file for both breeds and coefficients for heterosis and recombination. The least squares means for fat production were 1.21, 1.15, 1.27, and 1.16 kg for HO, BS, SH, and SX, respectively, which corresponds to a heterosis estimate of 7.30% and a recombination estimate of −3.76%. Heterosis and recombination estimates for protein production were 5.63% and −3.31%, respectively. Heterosis estimates increased for fat yield (10.38%) and protein yield (7.07%) when maternal grandsire identification from a known artificial insemination sire was required. Regression coefficients indicated an 11.44-d reduction in DO due to heterosis. Heterosis estimates for SCS were inconsistent. Regression on heterosis for SCS was significant and favorable (−0.22) when the breed of sire was BS, but nonsignificant and unfavorable when sire breed was HO (0.43). Heterosis estimates were favorable for all traits, whereas recombination effects tended to be unfavorable for yield traits. Reduced performance of future generations did not appear to be the result of inseminating crossbred cows with inferior sires. Results indicated that first-generation crosses among BS and HO compared favorably with HO. Yield in subsequent generations was somewhat below expectations, perhaps due to recombination loss in HO.  相似文献   

11.
The purpose of this study was to evaluate the effect of breed, stage of lactation, and health status of the udder on the plasmin-plasminogen system in ovine milk. A total of 38 ewes were used from 3 breeds [Boutsiko (n = 12), Chios (n = 12), and a synthetic breed (50% Boutsiko, 25% Arta, and 25% Chios, n = 14)] with major differences in their genetic potential with respect to milk yield. Milk samples were collected every 2 wk throughout the lactation period and were analyzed for fat, protein, lactose, and somatic cell count (SCC). In addition, milk plasmin (PL), plasminogen (PG), and plasminogen activator (PA) activities were determined. The Chios breed had the greatest average daily milk yield, the synthetic breed had an intermediate milk yield, and ewes of the Boutsiko breed had the lowest milk yield. Milk samples obtained from the Boutsiko breed had similar PL and PA activities, compared with those obtained from the other 2 breeds. The ratio of PG:PL was less in milk samples from the Boutsiko breed compared with the other 2 breeds, indicative of an increased rate of conversion of PG to PL for this breed. There was no correlation between PL activity and daily milk yield in ewes from all 3 breeds. Activities of PL, PG, and PA were greater in ovine milk with elevated SCC (>300,000/mL) compared with activities in milk with low SCC (<300,000/mL). The ratio of PG:PL was less in the high-SCC group compared with the low-SCC group, which indicates an increased rate of conversion of PG to PL for the high-SCC group. There was a decrease in PG and PA activities as well as in the PG:PL ratio in late lactation milk (mo 5 to 6) when compared with early or mid lactation milk (mo 1 to 4). Thus, the PL-PG system is affected by breed, stage of lactation, and the health status of the udder. No relationship was found between PL activity and daily milk yield in the 3 Greek dairy sheep breeds. Plasmin is not a marker for gradual involution in the Greek sheep breeds studied.  相似文献   

12.
Tinerfeñ a breed goats were assigned to 2 experimental herds and milked once (n = 28) or twice (n = 24) daily to study correlations between udder morphology, milk yield, and milking ability during the middle stage of the first lactation. Pearson correlation coefficients were significantly higher between yield and measures of udder globulousness (udder volume, r = 0.79 and r = 0.59; perimeter of insertion of the udder, r = 0.47 and r = 0.37; distance between teats, r = 0.77 and r = 0.28, for goats milked once and twice daily, respectively) than for length parameters (cistern floor distance, r = 0.40 and r = −0.29; udder depth, r = −0.20 and r = 0.20). The globulousness of the udder was correlated with easier milking ability, as shown by milk fractioning (r = 0.49 to 0.70) and milk flow measures (r = 0.32 to 0.49). The results showed that the globulousness of the udder is more important than length measurements in assessing milk yield and milking ability.  相似文献   

13.
Milk production per cow has increased significantly as a result of breeding, feeding, and other management factors. This study aims to address concerns about udder health risks for low- and high-producing dairy cows. In a 2 × 2 × 2 factorial design, Holstein-Friesian heifers (n = 100) of low or high genetic merit for milk production, milked 2 or 3 times a day, and fed a mixed ration with low or high energy content, were compared during the first 14 wk of lactation. Milk composition and cell counts were determined weekly; quarter milk samples for bacteriology were taken in wk 2, 8, and 14; and teat condition was scored in wk 2, 6, 10, and 14 during the experiment. The experimental factors resulted in substantial differences in milk production between treatment groups (24.1 for low vs. 25.6 kg/d for high genetic merit; 23.3 for 2 times vs. 26.5 kg/d for 3 times daily milking; and 20.9 for low-energy ration vs. 29.0 kg/d for high-energy ration). Ration composition was the most important determining factor for milk production, but did not affect cell counts or intramammary bacterial infections, although cows that received low-energy rations had rougher teat ends than cows receiving high-energy rations. This indicates that high production itself is not a major risk factor for udder health in the first lactation. A higher milking frequency impaired teat condition and improved cell counts in general, but did not clearly influence bacteriological status. High genetic merit was related to higher cell count, more Staphylococcus, and less Bacillus and other environmental pathogens in cultures and did not affect teat condition. The effects of milking frequency and feeding on udder health were similar for cows with high and low genetic merit. Genetic selection on milk production, without taking udder health into account, reduces udder health. As a result, maintaining udder health will require increasing the skills and time of dairy farmers who have to divide their attention to more cows when farm sizes increase, or selection should put more emphasis on udder health traits.  相似文献   

14.
The objective of this study was to estimate genetic parameters for mastitis and its predictors [mean somatic cell score (SCS) in early lactation, standard deviation of SCS, excessive test-day somatic cell count (SCC), udder depth (UD), fore udder attachment (FUA), and body condition score (BCS)]. Mastitis data recorded by producers were available from the national dairy cattle health system in Canada. Mastitis was defined as a binary variable based on whether or not the cow had at least 1 mastitis case in the period from calving to 305 d after calving. A Bayesian analysis using Gibbs sampling was applied. Threshold liability models were applied for binary traits (mastitis and excessive test-day SCC), and linear models were used for other normally distributed traits. For mastitis, a heritability of 0.07 was obtained. Heritability estimates for mean SCS in early lactation, standard deviation of SCS, excessive test-day SCC, UD, FUA, and BCS were 0.10, 0.04, 0.06, 0.41, 0.21, and 0.18, respectively. Mastitis was highly correlated with mean SCS in early lactation (0.63), standard deviation of SCS (0.74), and excessive test-day SCC (0.76). Moderate genetic correlations of −0.36, −0.24, and −0.28 were found between mastitis and UD, FUA, and BCS, respectively. As much as 72% of the genetic variation in mastitis resistance was explained by all the indirect predictor traits, whereas the most commonly used indirect measures of mastitis resistance (SCS in early lactation, UD, and FUA) explained together only 46% of the genetic variation in mastitis resistance. A combination of mean and standard deviation of SCS seem to be more successful in improving udder health than the traditional indirect measures. The results of the present study highlight that although routine cow SCC is the best measurement to monitor udder health, it cannot explain all the genetic variation in mastitis resistance and, therefore, direct information on mastitis resistance can be expected to yield to a more accurate genetic evaluation for this trait.  相似文献   

15.
The objective of this study was to compare calving traits, BCS, milk production, fertility, and survival of Holstein-Friesian (HF) and Norwegian Red (NR) dairy cattle in moderate-concentrate input systems. The experiment was conducted on 19 commercial Northern Ireland dairy farms, and involved 221 HF cows and 221 NR cows. Cows completed 5 lactations during the experiment, unless they died or were culled or sold. Norwegian Red cows had a lower calving difficulty score than HF cows when calving for the first and second time, but not for the third and fourth time. At first calving, the incidence of stillbirths for NR cows was 4%, compared with 13% for HF cows, whereas no difference existed between breeds in the proportion of calves born alive when calving for the second time. When calving for the first time, NR cows had a poorer milking temperament than HF cows, whereas milking temperament was unaffected by breed following the second calving. Holstein-Friesian cows had a higher full-lactation milk yield than NR cows, whereas NR cows produced milk with a higher milk fat and protein content. Full-lactation fat + protein yield was unaffected by genotype. Norwegian Red cows had a lower somatic cell score than HF cows during all lactations. Although NR cattle had a higher BCS than the HF cows during lactations 1 and 2, no evidence existed that the 2 genotypes either lost or gained body condition at different rates. Conception rates to first artificial insemination were higher with the NR cows during lactations 1 to 4 (57.8 vs. 40.9%, respectively), with 28.5% of HF cows and 11.8% of NR cows culled as infertile before lactation 6. A greater percentage of NR cows calved for a sixth time compared with HF cows (27.2 vs. 16.3%, respectively). In general, NR cows outperformed HF cows in traits that have been historically included in the NR breeding program.  相似文献   

16.
Our aim was to evaluate the effects of once-daily milking on the welfare of dairy cows in a pastoral-based farming system. There are concerns that cows milked only once daily may experience discomfort associated with udder distension. We evaluated the behavior, including lying time and postures, grazing patterns, and kicking behavior in the parlor, and measures of udder firmness in cows milked once daily in 2 experiments: 1) at peak lactation, comparing cows milked once (1×) or twice-daily (2×) from the time of calving (n = 4 groups; 1× and 2× treatments); and 2) during the transition from 2× to 1× milking at mid lactation (n = 12 groups; 1×, 2×, and 2× to 1× treatments or TRANS). At peak lactation, cows milked 1× were more likely to lie with their hind legs touching the body than cows milked 2×. There were no differences in udder firmness (1×: 10.0 vs. 2×: 9.9 ± 0.13 g of force) or kicking (1×: 25 vs. 2×: 24 ± 7.8%) behavior in the parlor. In the second experiment, milking frequency was reduced from 2× to 1× and this change resulted in an increase in udder firmness (1 ×: 9.1, 2×: 9.3, and TRANS: 9.5 ± 0.14 g of force). Despite these differences in udder firmness, lying time (1×: 10.1, 2×: 9.5, and TRANS: 9.6 ± 0.38 h/24 h), postures, and concentrations of fecal glucocorticoid metabolites (1×: 10.0, 2×: 10.5, and TRANS: 10.4 ± 0.49 ng/g of feces in the 3 d after transition) in cows milked 1× or 2× were similar. Although milking frequency did not influence total time spent grazing, the diurnal grazing pattern of cows milked 2× was disrupted by afternoon milking at both peak and mid lactation. Cows milked 2× were able to compensate for this by grazing more after the return to pasture (DIM 153 to 155, 1×: 52 vs. 2×: 66 ± 6.2 min/90 min of grazing). Cows milked 1× had slightly longer strides than 2× cows at mid lactation (1×: 0.73, 2×: 0.70, and TRANS: 0.70 ± 0.014 strides/m). In conclusion, under our experimental conditions, we found no overt changes in behavior or physiology to indicate that the welfare of cows milked 1× is impaired.  相似文献   

17.
The aim of the present study was to infer daily genetic relationships between the selected claw disorders digital dermatitis, sole ulcer (SU), and interdigital hyperplasia (IH) and protein yield and the udder health indicator somatic cell score (SCS). Data were from 26,651 Holstein cows kept in 15 selected large-scale herds located in the region of Thuringia in the eastern part of Germany. Herds are characterized by organized data recording for novel health traits, and for the present study, claw disorders from the years 2008 to 2012 were used. A longitudinal and binary health data structure was created by assigning claw disorders to adjacent official test days. No entry of a claw disorder within a given interval of approximately 30 d implied a score of 0 (healthy), and otherwise, a score of 1 (diseased). Threshold random regression models (RRM) were applied to binary health data, and linear RRM to Gaussian-distributed protein yield and SCS. Genetic correlations between protein yield and SCS for identical days in milk (DIM) only revealed a tendency for genetic antagonisms between DIM 40 and DIM 180, with a maximal genetic correlation (rg) of 0.14 at DIM 100. With regard to protein yield and claw disorders, the largest and moderate values of rg (~0.30), indicating a genetic antagonism between productivity and claw health, were found when correlating protein yield from DIM 300 with SU from DIM 160. Especially for SU and protein yield, time-lagged relationships were more pronounced than genetic relationships from the same test days. Genetic correlations between IH and protein yield were favorable and negative from calving to DIM 300. Generally, on the genetic scale, we found heterogeneous associations between protein yield and claw disorders (i.e., different rg at identical test days for different claw disorders, and also an alteration of rg for identical traits at different DIM). The SCS measured at d 20, 160, and 300 was genetically positively correlated with SU over the whole trajectory of 365 d, indicating a common genetic background for claw and udder health. A maximal value of 0.36 was found for the rg between SCS from d 300 and SU early in lactation. Additionally, a recursive effect was observed (i.e., rg = 0.26 between SCS from d 20 and SU from d 340). Genetic correlations between SCS and IH, and between SCS and digital dermatitis, were close to zero and partly negative during lactation. Results showed the feasibility of threshold RRM applications to binary claw health data, and a changing genetic background in the course of lactation. From a practical perspective, and with regard to the herds used in this study, continuation of breeding on productivity will have different effects on incidences of different claw disorders, with the highest susceptibility to SU.  相似文献   

18.
During the last decade, the use of systematic crossbreeding in dairy cattle herds has increased in several countries of the world. The aim of this study was to estimate the effect of breed proportion and heterosis on milk production traits and udder health traits in dairy cattle. The study was based on records on milk yield (MY), protein yield (PY), fat yield (FY), somatic cell score (SCS), and mastitis (MAST) from 73,695 first-lactation dairy cows in 130 Danish herds applying systematic crossbreeding programs. Around 45% of the cows were crosses between Danish Holstein (DH), Danish Red (DR), or Danish Jersey (DJ), and the remaining were purebred DH, DR, or DJ. The statistical model included the fixed effects of herd-year, calving month, and calving age and an effect representing the lactation status of the cow. In addition, the model included a regression on calving interval from first to second lactation, a regression on the proportion of DH, DR, and DJ genes, and a regression on the degree of heterozygosity between DH and DR, DH and DJ, and DR and DJ. Random effects were the genetic effect of the cow and a residual. The effect of breed proportions was estimated relatively to DH. For MY, a pure DR yielded 461 kg milk less than DH, whereas a pure DJ yielded 2,259 kg milk less than a pure DH. Compared with DH, PY was 41.7 kg less for DJ, whereas PY for DR was 4.0 kg less than for DH. For FY, a DR yielded 10.6 kg less than DH, whereas there was no significant effect of breed proportion between DJ and DH. A DR cow had lower SCS (0.13) than DH, whereas DJ had higher SCS (0.14) than DH. There was no significant effect of breed proportion on MAST between the 3 breeds. Heterosis was significant in all combinations of breeds for MY, FY, and PY. Heterosis for crosses between DH and DR was 257 kg (3.2%), 11.9 kg (3.2%), and 8.9 kg (3.2%) for MY, PY, and FY, respectively. Corresponding figures for crosses between DH and DJ were 314 kg (4.4%), 14.3 kg (4.4%), and 10.4 kg (4.0%), whereas heterosis between DR and DJ was 462 kg (6.7%), 19.6 kg (6.7%), and 13.9 kg (5.4%) for MY, PY, and FY, respectively. Heterosis was only significant for SCS in the crosses between DH and DR. Heterosis effects for MAST were nonsignificant for all the crosses. The results obtained in this study demonstrate that in first lactation cows, there is a positive effect of heterosis on milk production traits, but limited effect on udder health traits.  相似文献   

19.
The aim of this study was to estimate genetic parameters and accuracies of breeding values for milk content traits of individual udder quarters in Brown Swiss cattle. Data of 1,799 phenotyped cows from 40 Swiss dairy herds were analyzed, taking the complete pedigree into account. Fat, protein, lactose, and urea contents, somatic cell score (SCS), and information about hyperkeratosis were available for each udder quarter. The milk of rear udder quarters was found to have significantly higher lactose content and significantly lower fat content than milk of the front udder quarters. The same trend found for fat content was observed for protein content, whereas no differences between the udder quarters were observed for urea content, SCS, or hyperkeratosis. Heritabilities for each udder quarter were in the following ranges: fat content 0.09 ± 0.06 to 0.14 ± 0.06, protein content 0.20 ± 0.09 to 0.33 ± 0.07, lactose content 0.04 ± 0.03 to 0.16 ± 0.07, urea content 0.13 ± 0.07 to 0.22 ± 0.08, SCS 0.18 ± 0.06 to 0.32 ± 0.07, and hyperkeratosis 0.12 ± 0.04 to 0.26 ± 0.05. In our study, hyperkeratosis, protein content, and SCS showed higher heritabilities in the front udder quarters, fat content had higher heritabilities in the rear udder quarters, and no systematic pattern in heritability was observed for lactose content or urea content. Additive genetic correlations between all udder quarters were >0.90 for protein and urea contents, whereas they were remarkably low (<0.60) for SCS. For fat and lactose contents, the genetic correlations between the 2 front or between the 2 rear quarters, respectively, were notably higher than correlations between 1 front and 1 rear quarter, suggesting that the front and the rear udders could be considered as partly genetically different organs. The variability within the udder as such was found to be of low heritability (<0.10) in general, but repeatability was moderate to high for some traits (lactose content: 0.33 ± 0.05, protein content: 0.53 ± 0.05). Some of these findings can be explained by differences in the physiological background of the traits.  相似文献   

20.
A total of 25,160 milk test-day records from 2,516 cows in first lactation of 3 dairy cattle breeds [Simmental (n = 1,900), Brown Swiss (n = 444), and Tyrol Grey (n = 172)] in Kosovo were analyzed using nested repeatability and random regression test-day models with varying (co)variance structures. The different models were compared based on likelihood-based criteria. The best model was a second-order random regression model, with heterogeneous cow variance per breed and heterogeneous residual variance per lactation month and breed, which was used for further analysis. The highest milk production was found in Brown Swiss, followed by Simmental and Tyrol Grey. Substantial breed differences were found for the trajectories of cow and residual variances by month of lactation, with the highest variances found for Brown Swiss, followed by Simmental and Tyrol Grey. High cow and residual variances indicated a high degree of environmental sensitivity on the macro- and microenvironmental levels, respectively. Thus, these results indicate increased environmental sensitivity for breeds with higher genetic potential for milk production. These results support the conclusion that dairy cattle production under the current environmental conditions of Kosovo should be based on a breed with moderate production that is robust to the diet offered (e.g., Tyrol Grey).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号