首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multiparous cows (n = 59) were blocked by expected calving date and previous milk yield and assigned randomly to treatments to determine the effects of bovine somatotropin (bST; Posilac, Monsanto Animal Agricultural Group, St. Louis, MO) and source of dietary fat on production responses. Diets were provided from calving and included whole, high-oil sunflower seeds [SS; 10% of dietary dry matter (DM); n-6:n-3 ratio of 4.6] as a source of linoleic acid (18:2) or a mixture of Alifet-High Energy and Alifet-Repro (AF; Alifet USA, Cincinnati, OH; 3.5 and 1.5% of dietary DM, respectively; n-6/n-3 ratio of 2.6) as a source of protected n-3 fatty acids. Diets contained 181 versus 188 g of crude protein and 183 versus 186 g of acid detergent fiber/kg of DM and 1.54 versus 1.66 Mcal of net energy for lactation at the actual DM intake for SS versus AF, respectively. Cows received 0 or 500 mg of bST every 10 d from 12 to 70 d in milk (DIM) and at 14-d intervals through 280 DIM. The 2 × 2 factorial combination of diet (SS or AF) with or without bST administration resulted in treatments designated as SSY, SSN, AFY, and AFN, respectively. Data were analyzed as repeated measures using mixed model procedures to determine the effects of diet, bST, and their interactions. Yield of 3.5% fat-corrected milk was not altered by diet, but was increased by 4.0 ± 1.9 kg/d from 12 to 70 DIM and by 5.1 ± 1.2 kg/d from 12 to 280 DIM by bST. Treatment did not affect DM intake or energy balance (EB) nadir. There was an interaction of bST and diet on EB because AF decreased the impact of bST on overall EB and allowed AFY cows to reach a positive EB earlier than SSY cows. Gross feed efficiency adjusted for body weight change was greater for bST-treated cows (1.03 vs. 1.15 ± 0.03 kg of fat-corrected milk/Mcal of net energy for lactation). Circulating insulin-like growth factor-I concentrations were increased by bST (85 vs. 125 ± 8 ng/mL). Body weight, body condition score, and backfat thickness were reduced by bST, but differences between treated and nontreated cows did not differ by 280 DIM. Results indicate cows responded to bST administration in early lactation, but the magnitude of the response was greater after 70 DIM. Source of dietary fat had a minimal effect on most production measurements, but relative to SS, AF decreased the impact of bST on overall EB. Results support the premise that bST administration prolongs the delay in postpartum tissue replenishment.  相似文献   

2.
Multiparous cows (n = 59) were blocked by expected calving date and previous 305-d mature-equivalent milk yield and assigned randomly to a 2 × 2 factorial design to determine the effects of bovine somatotropin (bST; Posilac, Monsanto Animal Agricultural Group, St. Louis, MO) and dietary fat on ovarian activity during the first 90 d in milk (DIM). Diets that included whole, high-oil sunflower seeds [SS; 10% of dietary dry matter; rich in linoleic acid (18:2)] or a mixture of Alifet-High Energy and Alifet-Repro [AF; Alifet USA, Cincinnati, OH; 3.5 and 1.5% of dietary dry matter, respectively; protected source of linolenic (18:3), eicosapentaenoic, and docosahexaenoic fatty acids] were provided from calving. Diets were isocaloric at equal intakes, but AF provided more net energy for lactation at actual intakes (1.54 vs. 1.66 Mcal/kg of dry matter). Cows received 0 or 500 mg of bST (N, Y) every 10 d from 12 to 70 DIM and at 14-d intervals from 70 to 280 DIM. Breeding was initiated after 90 DIM. Follicular dynamics, luteal growth and development (15 to 90 DIM), and plasma progesterone concentrations (1 to 90 DIM) were evaluated (3 times per week). Days to first ovulation (33.6 ± 1.4) and incidence of anovulation at 45 or 70 DIM did not differ among treatments. Interovulatory intervals were similar among treatments (22.1 ± 0.9 d). Incidence of estrous cycles with 2 follicular waves was greater for SSY (71.0%) and AFN (80.0%) than for other groups, but more 3-wave cycles occurred with AFY (83.3%). Growth rate of the ovulatory follicle was greater for AF than SS (1.9 vs. 2.2 ± 0.11 mm/d) and diameter of ovulatory follicles was larger for AFN than the other treatments (17.9 vs. 15.7 ± 0.7 mm). Area under the progesterone curve was reduced for SSY (63.2, 48.1, 55.5, and 61.4 ± 5.1 ng·d/mL for SSN, SSY, AFN, and AFY, respectively). The number of class 1 (3 to 5 mm) follicles was decreased and the number of class 2 (6 to 9 mm) follicles was increased by bST. The number of class 2 follicles was reduced by AF. Initiation of bST administration at 12 DIM and dietary n-3 fatty acids altered ovarian activity during the first 90 DIM and could benefit reproductive performance. Dietary n-3 fatty acids interacted with bST administration in early lactation to increase the incidence of estrous cycles with 3 follicular waves. Although these changes could benefit reproductive performance, evaluation with a larger number of cows is needed to determine if these alterations improve fertility.  相似文献   

3.
4.
Our objective was to examine effects of exogenous bovine somatotropin (bST), pregnancy, and dietary fatty acids on fatty acid distribution in various tissues of lactating dairy cows. Two diets were fed, starting about 17 d in milk (DIM), in which oil of whole cottonseed (control diet) was compared with a calcium salt of fish oil-enriched lipid (FO; 1.9% of dietary DM). Starting at 44 ± 5 DIM, ovulation was synchronized with a presynchronization plus Ovsynch protocol (d 0 = time of synchronized ovulation). Some cows were inseminated (77 ± 12 DIM) to create a pregnant group. On d 0 and 11, cows received bST (500 mg) or no bST, and were killed on d 17 (94 ± 12 DIM). Number of cows in control group was 5 bST-treated cyclic (bST-C), 5 non-bST-treated cyclic (no bST-C), 4 bST-treated pregnant (bST-P), and 5 non-bST-treated pregnant (no bST-P) cows; and for the FO diet: 4 bST-treated (bST-FO-C) and 5 non-bST-treated cyclic (no bST-FO-C) cows. At slaughter, samples of endometrium, liver, muscle, s.c. adipose, internal adipose, and mammary gland were collected. Milk was collected at 75 ± 5 DIM. Gas chromatography was used to determine fatty acid percentages in tissues and milk fat. Endometrium from the cows fed FO had increased proportions of C20:5 and C22:6, whereas C20:4 was decreased. Injections of bST reduced both C18:2 and the n-6:n-3 ratio, but increased C22:6 in endometrium of cyclic control-fed, but not pregnant cows. In addition, FO decreased the n-6:n-3 ratio in all tissues and milk fat except for s.c. and internal adipose tissue. Cows fed FO also had increased C18:3, C20:5, and C22:6 in the liver and mammary tissue, and C18:3 and C22:6 were increased in the milk fat. The FO diet decreased the Δ9-desaturase index [(product of Δ9-desaturase]/(product of Δ9-desaturase + substrate of Δ9-desaturase]; DIX) in muscle and s.c. tissues, accompanied by an increase in saturated fatty acid (SFA) percentage. In addition, FO diet decreased DIX in the endometrium. In mammary and internal adipose tissues, bST increased DIX in cyclic control-fed cows, whereas bST decreased DIX in FO-fed cows, with no difference in the concentration of SFA and UNSFA. Cis-9, trans-11 conjugated linoleic acid was increased in milk fat, but decreased in the muscle and s.c. adipose tissue of FO-fed cows. The FO-enriched lipid, bST treatment, and early pregnancy can alter fatty acid percentages and distributions that may alter tissue functionality and functional nutrients of consumer products.  相似文献   

5.
A meta-analysis was conducted to assess production responses before 90 d in milk (DIM) when bovine somatotropin (bST) administration was initiated between 5 and 35 DIM. The database was developed from 13 studies of multiparous cows that were published between 1985 and 2006 and from an unpublished study that complied with the study selection criteria. The database included results from 842 cows and provided 50 treatment means for the effect of bST on 3.5% fat-corrected milk (FCM) in early lactation. Effects of bST were investigated using mixed model procedures that included fixed (intercept and slope) and random (intercept and slope) effects for independent variables. Yields of milk (38.6 ± 1.3 kg/d) and FCM (37.6 ± 1.6 kg/d) by control cows before 90 DIM were increased by 2.6 ± 0.8 and 3.2 ± 0.6 kg/d by bST administration. Fat content in milk from bST-treated cows was 0.31 ± 0.10 percentage units greater than that from control cows (3.46 ± 0.13%) but milk protein content (2.95 ± 0.03%) was not altered by bST. Milk fat (1.39 ± 0.10 kg/d) and protein (1.15 ± 0.04 kg/d) yields by controls were increased 0.16 ± 0.03 and 0.07 ± 0.03 kg/d by bST, respectively. Dry matter intake and body weight loss were not altered by bST before 90 DIM, but duration of negative energy balance was prolonged and overall energy balance during this interval reduced when cows were treated with bST. Results are consistent with the premise that bST-treated cows partition nutrients and energy toward milk synthesis for a longer duration and thus likely need a longer interval to replenish their body reserves than cows not treated with bST. Production responses to bST were not altered when cows consumed typical early-lactation diets supplemented with fat except that supplemental fat tended to decrease the magnitude of the effect of bST on milk fat content and decreased the effect of bST on fat and protein yield. Yield of FCM increased curvilinearly with the amount of bST administered. Results indicate that initiation of bST administration to cows before 35 DIM increased FCM yield but the response was at the low end of that typically observed when bST administration is initiated in wk 9 of lactation.  相似文献   

6.
Very long chain n-3 fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) are important in human cardiac health and the prevention of chronic diseases, but food sources are limited. Stearidonic acid (SDA; 18:4n-3) is an n-3 fatty acid that humans are able to convert to EPA. In utilizing SDA-enhanced soybean oil (SBO) derived from genetically modified soybeans, our objectives were to examine the potential to increase the n-3 fatty acid content of milk fat and to determine the efficiency of SDA uptake from the digestive tract and transfer to milk fat. Three multiparous, rumen-fistulated Holstein cows were assigned randomly in a 3 × 3 Latin square design to the following treatments: 1) control (no oil infusion); 2) abomasal infusion of SDA-enhanced SBO (SDA-abo); and 3) ruminal infusion of SDA-enhanced SBO (SDA-rum). The SDA-enhanced SBO contained 27.1% SDA, 10.4% α-linolenic acid, and 7.2% γ-linolenic acid. Oil infusions provided 57 g/d of SDA with equal amounts of oil infused into either the rumen or abomasum at 6-h intervals over a 7-d infusion period. Cow numbers were limited and no treatment differences were detected for DMI or milk production (22.9 ± 0.5 kg/d and 32.3 ± 0.9 kg/d, respectively; least squares means ± SE), milk protein percentage and yield (3.24 ± 0.04% and 1.03 ± 0.02 kg/d), or lactose percentage and yield (4.88 ± 0.05% and 1.55 ± 0.05 kg/d). Treatment also had no effect on milk fat yield (1.36 ± 0.03 kg/d), but milk fat percentage was lower for the SDA-rum treatment (4.04 ± 0.04% vs. 4.30 ± 0.04% for control and 4.41 ± 0.05% for SDA-abo). The SDA-abo treatment increased n-3 fatty acids to 3.9% of total milk fatty acids, a value more than 5-fold greater than that for the control. Expressed as a percentage of total milk fatty acids, values (least squares means ± SE) for the SDA-abo treatment were 1.55 ± 0.03% for α-linolenic acid (18:3n-3), 1.86 ± 0.02 for SDA, 0.23 ± <0.01 for eicosatetraenoic acid (20:4n-3), and 0.18 ± 0.01 for EPA. Transfer efficiency of SDA to milk fat represented 39.3% (range = 36.8 to 41.9%) of the abomasally infused SDA and 47.3% (range = 45.0 to 49.6%) when the n-3 fatty acids downstream from SDA were included. In contrast, transfer of ruminally infused SDA to milk fat averaged only 1.7% (range = 1.3 to 2.1%), indicating extensive rumen biohydrogenation. Overall, results demonstrate the potential to use SDA-enhanced SBO from genetically modified soybeans combined with proper ruminal protection to achieve impressive increases in the milk fat content of SDA and other n-3 fatty acids that are beneficial for human health.  相似文献   

7.
The objective was to evaluate the effects of feeding ground canola seed on the fatty acid profile, yield, and composition of milk from dairy cows. Twenty-four multiparous Holstein cows (548.3 ± 11.9 kg body weight and 28 ± 9 d in lactation) were randomly assigned to 1 of 2 treatments: Control (CON) or ground canola seed treatment (GCS) with 14% [of diet dry matter (DM)] of the total ration as ground canola seed containing 34% lipid. Diets contained 20% crude protein, but varied in net energy as a result of fat content differences of 2.5% and 6.4% (DM) for CON and GCS, respectively. Diets were composed of corn, corn silage, alfalfa (50:50 ground hay and haylage, DM basis), soybean and blood meal, and vitamins and minerals. Mechanically extruded canola meal was used in the CON diet to adjust for the protein from canola seed in the GCS diet. Cows were housed in tie-stalls and fed and milked twice daily for 10 wk. The inclusion of ground canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from GCS cows had greater proportions of long-chain fatty acids (≥18 carbons) and a lower ratio of n-6 to n-3 fatty acids. Feeding GCS reduced the proportion of short- and medium-chain fatty acids. Milk fat from cows fed GCS had a greater proportion of vaccenic acid and tended to have a higher proportion of cis-9,trans-11 conjugated linoleic acid. Actual and 3.5% fat-corrected milk yields were similar between treatments. The milk fat and protein percentages were lower for GCS cows, but total yield of these components was similar between treatments. Milk urea nitrogen was lower and serum urea nitrogen tended to be lower in cows fed canola seed. Serum glucose, insulin, and nonesterified fatty acids were not altered, but serum triglycerides were higher in GCS cows. Ammonia and total volatile fatty acids tended to be lower in ruminal fluid from GCS cows; rumen pH was unchanged. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without affecting milk yield or composition of milk.  相似文献   

8.
Citrate is a normal constituent of milk that affects milk-processing characteristics. It is an intermediate in the tricarboxylic acid cycle and plays an indirect role in fat synthesis by providing reducing equivalents in the form of NADPH. The objective of this study was to investigate variation in citrate with stage of lactation and de novo fatty acid synthesis, without confounding dietary effects. Twenty-four cows were fed the same diet, and milk citrate and fatty acids were determined over a 10-d period. Eight cows were in early lactation [13 ± 1.8 d in milk (DIM; mean ±standard error], 8 in midlactation (130 ±4.6 DIM), and 8 in late lactation (283 ±3.4 DIM). For cows in early, mid, and late lactation, milk yield was 34.4, 34.4, and 21.4 L/d [standard error of difference (SED) 1.78]; milk fat was 50.4, 40.3, and 41.4 g/L (3.68); milk citrate was 11.3, 9.7, and 10.1 mmol/L (0.64); the ratio of 4-14 C:18-20 C fatty acids was 0.9, 1.3, and 1.2 (0.07). Activity of the fatty acid synthase enzyme system (EC 2.3.1.85) was calculated as acetate used for chain elongation (ACE); ACE (mol/d) for cows in early, mid, and late lactation, was 7.3, 11.1, and 8.1 (SED 1.05). For individual cows, citrate (mmol/L) = 14.3 − 0.44 ×ACE (r2 = 0.58). We propose that ACE provides a more accurate indication of synthase activity than do fatty acid ratios or yields. This study confirms the hypothesis that variation in milk citrate with stage of lactation is related to de novo synthesis of fatty acids and that the relationship is independent of diet and milk yield.  相似文献   

9.
The effects of lactation stage, negative energy balance (NEB), and milk fat depression (MFD) were estimated on detailed milk fat composition in primiparous Holstein-Friesian cows. One morning milk sample was collected from each of 1,933 cows from 398 commercial Dutch herds in winter 2005. Milk fat composition was measured using gas chromatography, and fat and protein percentage were measured using infrared spectrometry. Each fatty acid changed 0.5 to 1 phenotypic standard deviation over lactation, except odd-chain C5:0 to C15:0, branched-chain fatty acids, and trans-10, cis-12 conjugated linoleic acid (CLA). The greatest change was an increase from 31.2 to 33.3% (wt/wt) for C16:0 from d 80 to 150 of lactation. Energy status was estimated for each cow as the deviation from each average lactation fat-to-protein ratio (FPdev). A high FPdev (>0.12) indicated NEB. Negative energy balance was associated with an increase in C16:0 (0.696 ± 0.178) and C18:0 (0.467 ± 0.093), which suggested mobilization of body fat reserves. Furthermore, NEB was associated with a decrease in odd-chain C5:0 to C15:0 (−0.084 ± 0.020), which might reflect a reduced allocation of C3 components to milk fat synthesis. A low FPdev indicated MFD (<−0.12) and was associated with a decrease in C16:0 (−0.681 ± 0.255) and C18:0 (−0.128 ± 0.135) and an increase in total unsaturated fatty acids (0.523 ± 0.227). The study showed that both lactation stage and energy balance significantly contribute to variation in milk fat composition and alter the activity of different fatty acid pathways.  相似文献   

10.
Objectives were to determine effects of continuous milking (CM) and bovine somatotropin (bST) administration on 1) mammary epithelial cell (MEC) proliferation, apoptosis, and ultrastructure during late gestation and early lactation, 2) expression of genes associated with proliferation, and apoptosis in mammary epithelial cells, and 3) milk yield and composition. Second-gestation, first dry-period cows were randomly assigned to either continuous bST throughout late gestation and early lactation (+bST; n = 4) or no bST (−bST; n = 4) administration. Within each animal, udder halves were randomly assigned to CM or a 60-d dry period (control) treatment. Daily milk yield and weekly milk composition were measured during the last 60 d of gestation in CM halves and from 1 to 30 d postpartum for both halves. Mammary biopsies were obtained at −20 ± 7, −8 ± 3, +1 ± 0, +7 ± 0, and +20 ± 0 d (mean ± standard error) relative to parturition. Prepartum half-udder milk yield was greater in +bST cows than in −bST cows (9.9 vs. 8.2 kg/d) and postpartum half-udder milk yields were dramatically reduced in CM halves compared with control halves (10.6 vs. 22.2 kg/d), regardless of bST treatment. Proliferation of MEC was reduced in CM halves at −8 d (2.7 vs. 5.4%). Apoptosis of MEC was elevated during early lactation for d +1 and +7 in control halves, but was only increased at d +1 in CM halves. Turnover of MEC was not affected by bST. Ultrastructure data indicated complete involution of the control half and lactation maintenance in CM glands (d −20). By d −8, control tissue contained alveoli in an immature secretory state, but CM tissue contained both lactating and immature alveoli. Postpartum ultrastructure parameters were similar between halves until d 20 when control tissue was composed of a homogeneous population of lactating alveoli, but CM tissue contained lactating, engorged, and resting alveoli. Expression of CCAAT/enhancer binding protein-β (CEBP-β), cyclin D1, and bcl2 were up-regulated during late gestation, but did not differ between control and CM halves. Expression of α-lactalbumin was increased in CM halves during late gestation, but was not different in CM and control tissue after parturition. Other genes evaluated (bax, insulin-like growth factor binding protein 5, ATP-binding cassette 1, and p27) were not differentially expressed at any timepoints evaluated. Results indicate that CM reduced subsequent half-udder milk yield in primiparous cows through altered MEC turnover and secretory capacity. Negative effects of CM on the subsequent lactation were not alleviated by bST supplementation.  相似文献   

11.
The objectives of this study were to evaluate the effect of administering 500 mg of recombinant bovine somatotropin (bST) every 10 d on ovulatory responses, estrous behavior, and fertility of lactating Holstein cows. Lactating dairy cows were assigned to 1 of 2 treatments: a control with no administration of bST (73 primiparous and 120 multiparous cows) or 6 consecutive administrations of 500 mg of bST (83 primiparous and 123 multiparous cows) given subcutaneously at 10-d intervals starting 61 ± 3 d postpartum (study d 0), concurrent with the initiation of the timed artificial insemination (AI). Blood samples were collected thrice weekly from 61 ± 3 to 124 ± 3 d in milk (DIM), and plasma samples were analyzed for concentrations of estradiol, glucose, insulin, insulin-like growth factor 1, and progesterone. The estrous cycle of cows was presynchronized with 2 injections of PGF2α at 37 ± 3 and 51 ± 3 DIM, and the Ovsynch timed AI protocol was initiated at 61 ± 3 DIM. Ovaries were scanned to determine ovulatory responses during the Ovsynch protocol. Pregnancy was diagnosed at 33 and 66 d after AI. Body condition was scored on study d 0, 10, 42, and 76. Sixty-four cows were fitted with a pressure mounting sensor with radiotelemetric transmitters to monitor estrous behavior. Treatment of lactating dairy cows with 500 mg of bST at 10-d intervals increased yields of milk and milk components in the first 2 mo after treatment. Body condition of bST-treated cows remained unaltered, whereas control cows gained BCS. Treatment with bST increased concentrations of insulin-like growth factor 1 chronically, but concentrations of insulin and glucose increased only transiently in the first 7 d after the first injection of bST. Concentrations of progesterone during and after the Ovsynch protocol remained unaltered after treatment with bST; likewise, ovulatory responses during the Ovsynch protocol were mostly unaltered by treatment. Concentration of estradiol tended to be greater for bST cows than for control cows immediately before induction of ovulation in the Ovsynch protocol. Similarly, the mean and the peak concentrations of estradiol were greater for bST cows than for control cows when monitored during spontaneous estrus. Nevertheless, duration of estrus and the median number of standing events were less for bST cows than for control cows. Pregnancies per AI after the first and second postpartum inseminations were not affected by bST treatment. Treatment of lactating dairy cows with 500 mg of bST every 10 d improved lactation performance, but it did not affect pregnancies per AI and it reduced expression of estrus.  相似文献   

12.
Lactation can be induced successfully in 15-mo-old dairy heifers. Treatment of heifers induced into lactation with bovine somatotropin (bST) during an established lactation improved milk production; however, milk yields were still variable. The objective of the present study was to evaluate whether starting bST treatment during induction of lactation, rather than after lactation was established, would improve milk production beyond that of heifers induced into lactation but not treated with bST. Healthy Holstein heifers (n = 32, 15 mo of age, 420 ± 28 kg of body weight) were induced into lactation with subcutaneous injections of estradiol (0.075 mg/kg of body weight per d) and progesterone (0.25 mg/kg of body weight per d) for 7 d. Bovine somatotropin (500 mg) was administered to heifers (n = 16) beginning on experimental d 1 along with the estrogen/progesterone treatment. Heifers continued to receive bST every 2 wk for 10 wk. Control animals (n = 16) received no bST during this time. Milking began on experimental d 18, and milk production was compared through 53 d in milk (experimental d 70). Mean daily milk yield was 36% higher for bST-treated heifers than for control animals. A 15.5% difference in milk production between the groups was sustained through 305 d of lactation, even after control animals began bST treatment at 54 d in milk. Milk fat percentage was similar in bST and control heifers. Milk protein percentage was lower in bST-treated heifers (3.58%) compared with controls (3.99%) during the treatment comparison period and for the remainder of lactation (bST 3.25%, control 3.39%). Heifers treated with bST produced more total milk fat and protein compared with controls during the treatment comparison period. Throughout the induced lactation, heifers gained 0.87 kg/d and averaged 2.4 services/pregnancy; 30 became pregnant. Four heifers were culled during the induced lactation, and 28 heifers calved at 27.6 ± 2.0 mo of age for a second lactation. Addition of bST to the lactation induction protocol was advantageous because it stimulated greater milk production.  相似文献   

13.
Bovine somatotropin (0 or 41.2 mg/d bST) and calcium salts of long-chain fatty acids (0 or .77 kg/d Ca-LCFA) were administered to 16 Holstein cows in early lactation. Cows remained on 0 or 41.2 mg/d bST for the entire 10 wk and received 0 or .77 kg/d Ca-LCFA in one of two 5-wk periods. Production data were recorded daily, milk fatty acids, and blood metabolites were determined once each period. Treatments did not affect feed intake. Fat-corrected milk (kg/d) and percentage of milk fat for cows receiving no supplementation, fatty acids alone, bST alone, and fatty acids and bST together were 33.8, 3.2; 33.5, 3.1; 37.4, 3.4; and 40.8, 3.5. Milk fatty acids below C16 were reduced with either bST or dietary fatty acids; C16 fatty acids were lower with bST but higher with dietary fatty acids; C18:0 fatty acids were reduced with dietary fatty acids; and C18:1 fatty acids were higher with either bST or dietary fatty acids. Blood acetoacetate concentrations were higher with both bST and dietary fatty acids, beta-hydroxybutyrate was not different, and FFA and insulin concentrations increased with bST. In this experiment, the energy supplied by Ca-LCFA acids enhanced the lactogenic effect of bST.  相似文献   

14.
Our objectives were to determine lactational and reproductive outcomes in response to increased milking frequency (MF), injection of estradiol cypionate (ECP), and treatment with bovine somatotropin (bST). Lactating dairy cows (n = 144) were blocked by lactation number (1 vs. 2+) and assigned randomly to a 2 × 2 × 2 factorial experiment consisting of 8 treatment combinations: 1) MF consisting of 4× daily milking (4×) for the first 30 d in milk (DIM) vs. 2× daily milking (2×), with all cows milked 2× after 30 DIM; 2) 10 mg of ECP given postpartum at 8 ± 3 DIM versus controls that received ECP diluent (oil); and 3) biweekly bovine somatotropin (bST), starting sometime after 60 DIM, versus no bST. Ovulation before the first artificial insemination was synchronized by using Heatsynch (GnRH injection 7 d before PGF2α followed in 24 h by ECP), and cows were artificially inseminated after detected estrus or at 48 h after ECP, whichever came first. Pregnancy was assessed by transrectal ultrasonography 28 to 30 d after artificial insemination. Daily yield and weekly components of milk were measured during the first 90 DIM. Intervals to first and second postpartum ovulation were unaffected by treatment, but cows were in estrus earlier after 2× (24 ± 4 d) than 4× (41 ± 4 d) daily MF, and sooner after ECP (25 ± 3 d) than after oil (39 ± 4 d) treatment. Pregnancy rates among 4× cows increased for ECP versus oil (52.8 vs. 27.8%) more than for cows with 2× MF treated with ECP versus oil (50.0 vs. 39.4%). Increased MF increased daily milk yields and energy-corrected milk yields during the first 30 DIM. Although milk yields were increased acutely by ECP during the 10 d after its injection, subsequent milk yields were decreased for ECP-treated cows previously milked 4× daily. Treatment with bST increased overall daily milk yields most in cows previously milked 2× daily and treated with oil and those milked 4× daily and treated with ECP. We concluded that early postpartum ECP injection increased pregnancy rates, but generally had detrimental effects on milk yields after 30 DIM for ECP-treated cows previously milked 4× daily, unless those cows also were treated with bST.  相似文献   

15.
The study was designed to test the effects of feeding fish meal (FM) and specific n-3 fatty acids on milk yield and composition, dry matter intake, plasma concentrations of metabolic hormones and metabolites, and liver triglyceride accumulation in early lactating cows. From 5 to 50 d in milk (DIM), cows were fed diets that were isonitrogenous, isoenergetic, and isolipidic containing none (control), 1.25, 2.5, or 5% menhaden FM or 2.3% Ca salts of fish oil fatty acids (CaFOFA). Milk yield (48.2, 49.8, 48.6, 53.5, and 52.2 ± 1.0 kg/d, respectively) and dry matter intake (22.7, 22.8, 23.0, 23.8, and 24.7 ± 0.5 kg/d, respectively) differed among diets. Average daily plasma glucose concentration (53.4, 55.3, 51.1, 57.6, and 57.3 ± 1.3 mg/dL, respectively) was also affected by diet, and plasma insulin concentration was increased by 5% FM and 2.3% Ca-FOFA. At 25 and 50 DIM, blood was collected before feeding and hourly for 11 h after feeding. Plasma glucose concentrations in cows during the day were similar among diets at 25 DIM, but differed at 50 DIM (54.6, 54.4, 52.4, 60.5, and 58.3 ± 1.4 mg/dL for 0, 1.25, 2.5, and 5% FM or 2.3% CaFOFA, respectively). Plasma insulin was increased in cows fed 5% FM and 2.3% CaFOFA at 25 DIM and was similar among diets at 50 DIM. Dietary treatments had no significant effect on milk composition, energy balance, or on daily plasma concentrations of nonesterified fatty acids, β-hydroxybutyrate, and urea. Plasma aspartate aminotransferase and hepatic triglyceride concentration in cows did not differ among diets at 21 DIM. Results from this experiment demonstrate that dietary supplementation with FM or n-3 polyunsaturated fatty acids in early lactating dairy cows significantly increased milk yield and DMI with no change in milk composition.  相似文献   

16.
The objective was to examine effects of bovine somatotropin (bST), pregnancy, and dietary fatty acids on reproductive responses in lactating dairy cows. Beginning at approximately 17 d in milk (DIM), a comparison was made of isoenergetic diets comprising supplementary lipids of whole cottonseed vs. calcium salts of fish oil enriched lipid (FO). Ovulation was synchronized in cows with a presynchronization plus Ovsynch protocol, and cows were inseminated artificially by appointment or not inseminated (d 0 = time of synchronized ovulation; 77 ± 12 DIM). On d 0 and 11, cows received bST (500 mg) or no bST. All cows were slaughtered on d 17. Number of cows in each group was as follows: control diet had 5 bST-treated cyclic (bST-C), 5 non-bST-treated cyclic (no bST-C), 4 bST-treated pregnant (bST-P), and 5 non-bST-treated pregnant (no bST-P) cows; and cyclic cows fed FO diet had 4 bST-treated (bST-FO) and 5 non-bST-treated cyclic (no bST-FO-C) cows. Feeding FO increased milk production, number of class 1 follicles (2 to 5 mm), and decreased insulin during the period before d 0 compared with control-fed cows. The bST increased milk production, pregnancy rate [83% (5/6) vs. 40% (4/10)], conceptus length (45 vs. 34 cm), and interferon-τ in the uterine luminal flushings (9.4 vs. 5.3 μg) with no effect on interferon-τ mRNA concentration in the conceptus. Treatment with bST increased plasma growth hormone (GH) and insulin-like growth factor (IGF)-I. Among control-fed cows (cyclic and pregnant), bST decreased progesterone concentration in plasma. Cows fed FO had less plasma insulin than control-fed cyclic cows, and FO altered the plasma GH (bST-FO > bST-C) and IGF-I (bST-C > bST-FO-C) responses to bST injections. Endometrial IGF-I mRNA was reduced in pregnant cows and tended to decrease in those fed FO. The IGF-II mRNA was increased in the endometrium of pregnant and bST-treated cows fed the control diet. Cows fed FO had increased concentrations of IGF-II mRNA, when bST was not injected. The insulin-like growth factor binding protein-2 (IGFBP-2) mRNA was increased in bST-P cows, whereas bST decreased the IGFBP-2 mRNA in all cyclic cows. In summary, bST and FO seemed to modulate reproductive responses that may be beneficial to the developing conceptus and pregnancy rate.  相似文献   

17.
Experimental objectives were to determine the effects of supplemental saturated fatty acids on production, body temperature indices, and some aspects of metabolism in mid-lactation dairy cows experiencing heat stress. Forty-eight heat-stressed Holstein cows were allocated into 3 groups (n = 16/group) according to a completely randomized block design. Three treatment diets consisted of supplemental saturated fatty acids (SFA) at 0 (SFA0), 1.5 (SFA1.5), or 3.0% (SFA3) of dry matter (DM) for 10 wk. Diets were isonitrogenous (crude protein = 16.8%) and contained 1.42, 1.46, and 1.49 Mcal of net energy for lactation/kg of DM for the SFA0, SFA1.5 and SFA3 diets, respectively. The average temperature-humidity index at 0700, 1400 and 2200 h was 72.2, 84.3, and 76.6, respectively. Rectal temperatures at 1400 h were decreased with fat supplementation. Treatment did not affect dry matter intake (20.1 ± 0.02 kg/d), body condition score (2.72 ± 0.04), body weight (627 ± 16.1 kg), or calculated energy balance (1.32 ± 0.83 Mcal/d). Saturated fatty acid supplementation increased milk yield, milk fat content, and total milk solids. Increasing fat supplementation decreased plasma nonesterified fatty acids (8%) but had no effect on other energetic metabolites or hormones. In summary, supplemental SFA improved milk yield and milk fat content and yield and reduced peak rectal temperatures in mid-lactation heat-stressed dairy cows. This demonstrates the remarkable amount of metabolic heat that is “saved” by energetically replacing fermentable carbohydrates with supplemental SFA.  相似文献   

18.
Multiparous Holstein cows (n = 300) were assigned to 1 of 2 milking frequency treatments at parturition. Cows were either milked 6 times (6×) or 3 times (3×) daily to determine effects on early lactation milk yields and subsequent lactation persistency with or without use of recombinant bST (rbST). Treatments included a control group milked 3× and 3 groups milked 6× for either the first 7, 14, or 21 days in milk (DIM). Those 4 groups of cows all received rbST starting at 63 DIM. The fifth treatment group was also milked 6× for the first 21 DIM but those cows received no rbST during the entire lactation. All cows returned to 3× milking after their respective treatment periods ended. Cows milked 3× tended to produce more milk (43.2 vs. 41.5 and 41.0 ± 1.1 kg/d) during the first 9 wk of lactation compared with cows milked 6× for 7 or 21 DIM, respectively. Group milk yields after wk 9 averaged 38.3 ± 0.7 kg/d and did not differ among various groups assigned to an increased milking frequency in early lactation. Percentages of milk fat (3.8 ± 0.12%) and protein (2.9 ± 0.06%) did not differ among treatments during the first 9 wk after calving. Early lactation milk yield (41.9 ± 1.2 kg/d) did not differ between the 2 groups of cows milked 6× for 21 DIM. However, cows subsequently administered rbST (at 63 DIM) produced more milk (38.8 vs. 34.2 ± 0.9 kg/d) from wk 10 to 44. The number of cows sent to the hospital during the 305-d trial for mastitis (97), digestive disorders (14), respiratory issues (9), lameness (22), or retained placenta (16), were not affected by treatments (χ2 = 0.49). Under the conditions of this commercial dairy herd in Arizona, increasing milking frequency to 6 times daily for 7 to 21 d at the start of lactation conditions did not increase milk yield nor improve lactation persistency.  相似文献   

19.
To investigate the effect of the dietary intake of the cow on milk composition, bulk-tank milk was collected on 5 occasions from conventional (n = 15) and organic (n = 10) farms in Denmark and on 4 occasions from low-input nonorganic farms in the United Kingdom, along with management and production parameters. Production of milk based on feeding a high intake of cereals, pasture, and grass silage resulted in milk with a high concentration of α-linolenic acid (9.4 ± 0.2 mg/kg of fatty acids), polyunsaturated fatty acids (3.66 ± 0.07 mg/kg of fatty acids), and natural stereoisomer of α-tocopherol (RRR-α-tocopherol, 18.6 ± 0.5 mg/kg of milk fat). A milk production system using a high proportion of maize silage, by-products, and commercial concentrate mix was associated with milk with high concentrations of linoleic acid (LA; 19.7 ± 0.4 g/kg of fatty acids), monounsaturated fatty acids (27.5 ± 0.3 mg/kg of fatty acids), and a high ratio between LA and α-linolenic acid (4.7 ± 0.2). Comparing these 2 production systems with a very extensive nonorganic milk production system relying on pasture as almost the sole feed (95 ± 4% dry matter intake), it was found that the concentrations of conjugated LA (cis-9,trans-11; 17.5 ± 0.7 g/kg of fatty acids), trans-11-vaccenic acid (37 ± 2 g/kg of fatty acids), and monounsaturated fatty acids (30.4 ± 0.6 g/kg of fatty acids) were higher in the extensively produced milk together with the concentration of antioxidants; total α-tocopherol (32.0 ± 0.8 mg/kg of milk fat), RRR-α-tocopherol (30.2 ± 0.8 mg/kg of milk fat), and β-carotene (9.3 ± 0.5 mg/kg of milk fat) compared with the organic and conventional milk. Moreover, the concentration of LA (9.2 ± 0.7 g/kg of fatty acids) in milk from the extensive milk production system was found to approach the recommended unity ratio between n-6 and n-3, although extensive milk production also resulted in a lower daily milk yield.  相似文献   

20.
The objective of this study was to investigate the effect of milking frequency (MF) at 2 feeding levels (FL) on milk production, body condition score, and metabolic indicators of energy status in grazing dairy cows during early lactation. Multiparous Holstein-Friesian and Holstein-Friesian × Jersey cows (n = 120) grazed pasture and were milked twice daily (2×) from calving until 34 ± 6 d in milk (mean ± standard deviation). Cows were then allocated to 1 of 4 treatments in a 2 × 2 factorial arrangement. Treatments consisted of 2 FL: adequately fed [AF; 14.3 kg dry matter intake (DMI)/cow per d] or underfed (UF; 8.3 kg of DMI/cow per d) and 2 MF: 2× or once daily (1×). Treatments were imposed for 3 wk. After the treatment period, all cows were offered a generous pasture allowance (grazing residuals >1,600 kg of dry matter/ha) and milked 2×. During the 3-wk treatment period, we observed an interaction between FL and MF for energy-corrected milk (ECM), such that the decrease due to 1× milking was greater in AF than in UF cows (20 and 14% decrease, respectively). No interactions were found posttreatment. Cows previously UF produced 7% less ECM than AF cows during wk 4 to 12; however, no subsequent effect was observed of the previous underfeeding. Cows previously milked 1× produced 5% less ECM during wk 4 to 12, and differences remained during wk 13 to 23. During the 3-wk treatment period, UF cows lost 0.2 body condition score units (1–10 scale) and this was not affected by 1× milking. During the treatment period, UF cows had lower plasma glucose, insulin, and insulin-like growth factor I, and greater nonesterified fatty acids and β-hydroxybutyrate concentrations than AF cows. Cows milked 1× had greater plasma glucose, insulin, and insulin-like growth factor I, and lower nonesterified fatty acids and β-hydroxybutyrate concentrations compared with cows milked 2×. In conclusion, energy status was improved by 1× milking; however, when UF cows were milked 1×, milk production was reduced by more than underfeeding alone. The immediate and residual responses to 1× milking need to be considered when using this management strategy during a feed deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号