首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bovine mastitis is one of the most deleterious diseases for dairy herds and is mainly caused by contagious and environmental bacterial pathogens. Among contagious bacteria, Staphylococcus aureus is the most prevalent, whereas the main environmental mastitis pathogens are Streptococcus uberis and Escherichia coli. Bovine lactoferrin (bLF) is an approximately 80-kDa glycoprotein present in milk that participates in the innate response of the mammary gland against bacterial infection. The objectives of the current study were to analyze potential changes in bLF milk concentration, which would constitute a response of the mammary gland toward mastitis induced by different etiologic agents, and to evaluate a possible relation between this response and pathogen susceptibility to bLF. Microbiology analysis and bLF quantification in milk from different bovine mammary gland quarters were performed. Infected quarters presented greater concentrations of bLF compared with those from microbiologically negative quarters. Analysis of individual pathogen contributions showed that most of this increase was attributable to Strep. uberis intra-mammary infection. The ability of mammary gland cells to synthesize bLF in response to Strep. uberis challenge was demonstrated by immunodetection of the protein in in vitro infection experiments. Susceptibility of Strep. uberis, E. coli, and Staph. aureus to the antimicrobial activity of bLF was determined by growth inhibition assays conducted with 4 different isolates of each species. Whereas Staph. aureus and E. coli were shown to be susceptible to this protein, Strep. uberis appeared to be resistant to the antimicrobial activity of bLF. Molecular typing of the 4 Strep. uberis isolates used throughout this study showed that this result was representative of the species and not exclusive of a particular strain. Results presented herein suggest that different bacteria species may elicit different mammary gland responses mediated by bLF secretion and that Strep. uberis has probably adapted to this immune reaction by developing resistance to bLF inhibitory action.  相似文献   

3.
Mammary glands of early and late lactation cows were challenged with Enterococcus faecium of bovine origin to determine in vivo pathogenicity and milk somatic cell count (SCC) responses. A total of 20 early lactation and 18 late lactation mammary glands were challenged. Two isolates highly adaptive and 2 isolates poorly adaptive for in vitro growth in mammary secretion were used as challenge strains of bacteria. Challenged quarters of early lactation cows were more susceptible to intramammary infection caused by E. faecium than those of late lactation cows. Intramammary challenge with isolates poorly adaptive for in vitro growth in mammary secretions resulted in 94.7% of quarters infected compared with 36.8% of the quarters infused with the isolates highly adaptive for in vitro growth in mammary secretions. Milk from quarters infused with the isolates poorly adaptive for in vitro growth had higher SCC and bacterial counts compared with quarters challenged with the isolates highly adaptive for in vitro growth. A stage of lactation effect within treatment groups was measured when milk SCC were compared between early and late lactation cows. Milk SCC in uninfused (negative control) quarters were lower in early lactation cows compared with late lactation cows. Conversely, in quarters infused with isolates poorly adaptive for in vitro growth, SCC were higher in early lactation cows compared with late lactation cows on d 2, 3, 4, 15, 16, and 17 postchallenge. In quarters infused with isolates highly adaptive for in vitro growth, SCC response did not differ between early and late lactation cows. In vitro growth of E. faecium in mammary secretion was inversely related to in vivo pathogenicity in the mammary glands of early and late lactation cows.  相似文献   

4.
A challenge model for experimentally inducing Streptococcus uberis mastitis in bred dairy heifers was developed. Qualifying heifers (n = 7) exhibited antibody titers of < 1:10,000 against Strep. uberis antigens and were free of intramammary infections (IMI). Two contralateral quarters of each heifer were assigned to receive an infusion of Strep. uberis (1,000 to 2,000 cfu); remaining quarters served as unchallenged controls. For a successful challenge and infection, 3 of 4 consecutive mammary secretion samples had to culture positive for Strep. uberis. Six of the 7 heifers were challenged successfully in both infused quarters with a mean dose of 1,080 cfu; once confirmed, infections were treated with a one-time infusion of nonlactating cow therapy. Before challenge, mammary secretion leukocyte counts averaged 8.4 × 106/mL in all quarters. At 24 h after challenge, leukocyte count increased to 18.4 × 106/mL in challenged quarters, peaking on d 5 at 24.3 × 106/mL; unchallenged quarters remained at ≤ 10.4 × 106/mL, but increased to 15.2 × 106/mL on d 7 and then decreased. Before challenge, macrophages predominated (81%) in mammary secretions followed by lymphocytes (15.3%) and neutrophils (3.7%). By 24 h after challenge, neutrophils increased in challenged quarters and predominated for the duration of the trial (65.3 to 70%), whereas macrophages predominated in unchallenged control quarters (65.2 to 75.2%). The challenge model was successful in establishing Strep. uberis IMI in 85.7% of animals, and IMI were controlled (100% cure) by administering nonlactating cow therapy. All heifers calved free of IMI and antimicrobial residues, with milk production similar to that of herd mates and with somatic cell counts (SCC) < 200,000 cells/mL.  相似文献   

5.
6.
Bovine mastitis is a common and costly disease in the dairy industry and is known to negatively affect the amount of epithelium in nonlactating mammary glands. Despite this recognition, an understanding of the mechanisms contributing to reductions in epithelium is lacking. The objective of this study was to evaluate cellular apoptosis and proliferation in uninfected and Staphylococcus aureus-infected mammary glands that were stimulated to rapidly grow and develop. Estradiol and progesterone injections were administered to 18 nonlactating dairy cows to induce mammary growth, and 2 quarters from each animal were infused with saline or Staph. aureus. Mammary tissues were collected at 5 (n = 9) and 10 d (n = 9) postinfusion and examined using quantitative bright field and florescent immunohistochemistry. Staphylococcus aureus mammary glands tended to have a greater number of mammary epithelial cells undergoing apoptosis than saline quarters. In the stromal compartment, challenged quarters contained a lower proportion of cells undergoing apoptosis than saline quarters overall; however, cell types undergoing apoptosis were differentially affected. Staphylococcus aureus quarters contained a lesser percentage of apoptotic fibroblasts while also containing more nonapoptotic immune cells than saline quarters in the intralobular stroma compartment. A similar number of proliferating epithelial cells were present in Staph. aureus and saline mammary tissues, but more proliferating cells were present in the intralobular stroma compartment of Staph. aureus-infused quarters than those infused with saline. When these cellular responses are considered together, it indicates that changes in cellular apoptosis and proliferation contribute to changes in the gland structure by potentiating the expansion of the intralobular stromal compartment, via cellular accumulation, and limiting the amount of epithelium due to increases in cellular apoptosis in affected glands. Reductions in mammary epithelium are expected to reduce future milk yields and productive herd life.  相似文献   

7.
Among the gram-negative bacteria that cause mastitis, Escherichia coli are the most prevalent. The innate immune system provides initial protection against E. coli infection by detecting the presence of the foreign pathogens and by mounting an inflammatory response, the latter of which is mediated by cytokines such as IL-1β, IL-8, and tumor necrosis factor (TNF)-α. Although changes in these cytokines during mastitis have been well-described, it is believed that other mediators moderate mammary gland inflammatory responses as well. The growth factors/cytokines transforming growth factor (TGF)-α, TGF-β1, and TGF-β2 are all expressed in the mammary gland and have been implicated in regulating mammary gland development. In other tissues, these growth factors/cytokines have been shown to moderate inflammation. The objective of the current study was to determine whether TGF-α, TGF-β1, and TGF-β2 milk concentrations were altered during the course of E. coli-induced mastitis. The contralateral quarters of 11 midlactating Holstein cows were challenged with either saline or 72 cfu of E. coli, and milk samples were collected. Basal milk levels of TGF-α, TGF-β1, and TGF-β2 were 98.81 ± 22.69 pg/mL, 3.35 ± 0.49 ng/mL, and 22.36 ± 3.78 ng/mL, respectively. Analysis of whey samples derived from E. coli-infected quarters revealed an increase in milk levels of TGF-α within 16 h of challenge, and these increases persisted for an additional 56 h. Elevated TGF-β1 and TGF-β2 milk concentrations were detected in E. coli-infected quarters 32 h after challenge, and these elevations were sustained throughout the study. Because TGF-α, TGF-β1, and TGF-β2 have been implicated in mediating inflammatory processes, their induction during mastitis is consistent with a role for these molecules in mediating mammary gland host innate immune responses to infection.  相似文献   

8.
Klebsiella pneumoniae mastitis in dairy cattle is generally due to an opportunistic infection from the environment, resulting in large heterogeneity among mastitis-causing strains within a herd. However, in mastitis outbreaks in 4 herds, several strains of K. pneumoniae were identified as the cause of infection in multiple cows, suggesting increased ability to either cause disease or evade host defenses. In this study, differences in capsule formation and immune evasion were compared in 5 pairs of K. pneumoniae strains, where one strain in each pair was associated with multiple cases of mastitis and the other with a single case of mastitis. Production of capsular polysaccharide, ability to evade killing by polymorphonuclear neutrophilic leukocytes (PMNL), and the relationship between the 2 were evaluated for each strain grown in broth or milk. Growth of isolates in skim milk increased capsule size and ability to evade killing by PMNL, depending on strain type. Specifically, strains associated with multiple cases of mastitis had increased capsule size in skim milk. Strains associated with single cases of mastitis were better able to evade killing by PMNL when grown in skim milk. Our results, although preliminary, suggest that the 2 groups of strains may constitute different subpopulations of K. pneumoniae. However, our findings do not indicate that capsule or evasions of killing by PMNL explain increased mastitis outbreaks with Klebsiella. Further work will explain the enhanced ability of some strains to cause mastitis in dairy cows.  相似文献   

9.
The efficacy of intramammary (IM) treatments containing penicillin G (PG) alone or a combination of PG and bovine lactoferrin (bLF) was evaluated using a model of experimentally induced chronic bovine mastitis caused by a clinical isolate of Staphylococcus aureus highly resistant to β-lactam antibiotics. First, we confirmed that this strain could cause mastitis and infection could not be cured with PG alone. In a second trial, chronic mastitis was induced in 19 late-lactating cows by injecting a low dose of Staph. aureus through the teat canal of all quarters. After 15 d, cows with stable infections in their 4 quarters had their mammary quarters randomly assigned, within cow, to 1 of 4 IM treatments as follows: 1) citrate buffer, 2) 100,000 IU of PG, (3) 1 g of bLF, or 4) 1 g of bLF + 100,000 IU of PG. Treatments were repeated twice a day for 5 d. A third trial was undertaken to investigate the effect of an extended therapy on chronic mastitis acquired in a previous lactation. One month before dry-off, 20 gravid cows regrouped by dates of calving were infected in their 4 quarters. Once infections were established, cows were dried off abruptly. After calving, aseptic milk samples were collected separately from all quarters for 4 wk to monitor infection. Mammary quarters from enrolled cows were then randomly assigned, within cow, to 1 of 2 treatments as follows: 1) 100,000 IU of PG or 2) 250 mg of bLF + 100,000 IU of PG. Treatments were administered IM twice a day for 7 d. For all trials, milk samples were taken to monitor bacterial concentration and somatic cell count. Bacteriological cure rate was determined using milk samples taken 3 and 4 wk after initiation of treatments. For the second trial, cure rate was null for control quarters, 11.1% for bLF, 9.1% for PG, and 45.5% for the bLF + PG combination. For cows infected in their previous lactation, cure rate was higher for the bLF + PG combination (33.3%) compared with PG alone (12.5%). In conclusion, bLF added to PG is an effective combination (i.e., 3- to 5-times higher cure rate) for the treatment of stable Staph. aureu infections highly resistant to β-lactam antibiotics.  相似文献   

10.
Mastitis pathogens belonging to Escherichia coli species are often considered as environmental opportunistic pathogens that invade the udder and are rapidly killed by the immune system of cows. However, several studies have reported that some of these strains are able to persist in the udder for prolonged periods or to adhere and invade mammary epithelial cells, suggesting that they might possess some specific properties or genes that could be involved in their capacity to provoke mastitis. The aim of this work was to search for such specific genes in the E. coli strain P4, which was isolated from a case of severe mastitis and is often used to induce experimental mastitis. We established that this strain belongs to phylogenetic group A of the E. coli species, and that its core genome is very similar to that of the commensal nonpathogenic strain E. coli K-12 MG1655. Seventeen transfer RNA loci, known to be frequently associated with genomic islands, were screened and an altered structure was detected for 7 of them. The partial characterization of 5 of these loci (asnT, leuX, pheV, serU, and thrW) and the complete characterization of 1 (argW) revealed the presence of genomic islands that differ from those already described in pathogenic or nonpathogenic E. coli strains.  相似文献   

11.
Agents that increase natural protective mechanisms have been proposed for the prevention and treatment of intramammary infections. Staphylococcus aureus is a major pathogen causing primarily subclinical chronic mastitis that responds poorly to antibiotic therapy. The objectives of this study were to describe the effects of a single intramammary infusion of a lipopolysaccharide-based biological response modifier (BRM) on mammary epithelial cellular proliferation and expression of insulin-like growth factor-I (IGF-I) and vascular endothelial growth factor (VEGF) in uninfected and Staph. aureus-infected bovine mammary glands during involution. Three groups of 12 cows, 6 Staph. aureus-infected and 6 uninfected, were infused with BRM or placebo in 2 mammary quarters and killed at 7, 14, and 21 d of involution. The proportion of infected quarters, mammary cell proliferation, and IGF-I and VEGF expression were evaluated. Biological response modifier treatment decreased the proportion of Staph. aureus-infected mammary quarters at 7 d of involution, but a similar number of isolations were observed at 14 and 21 d of involution in either treated or control quarters. The percentage of proliferating mammary epithelial cells was higher in infected than uninfected quarters at every observation period, irrespective of the treatment administered, whereas uninfected BRM-treated quarters showed increased cell proliferation at 7 d of involution. Insulin-like growth factor-I expression in uninfected quarters was not affected by treatment and showed a decrease at 21 d of involution. Expression of IGF-I was greater in infected than uninfected quarters at every observation period, irrespective of the treatment received. Expression of VEGF was greater in BRM-treated uninfected quarters at 7 d of involution compared with controls. In infected quarters, VEGF expression was lowest in BRM-treated quarters at 7 d of involution and increased throughout the observation period. Conversely, untreated infected quarters showed the highest VEGF expression at 7 d and decreased at 21 d of involution. Mammary cell proliferation and expression of IGF-I and VEGF were increased in Staph. aureus-infected quarters. Increased mammary cell proliferation and VEGF expression were observed in BRM-treated quarters during the first week of involution.  相似文献   

12.
The dry period is a nonlactating phase in which senescent mammary cells are regenerated, which is thought to optimize milk production in the subsequent lactation. In bovines, the dry period normally coexists with pregnancy and the lactogenic hormones delay mammary gland involution and impair the activation of immune system to fight the risk of intramammary infections. Conventionally, long dry periods of up to 60 d are required to allow sufficient mammary regeneration for full milk yield in the next lactation. The aim of this study was to evaluate the potential of mammary serum amyloid A3 (M-SAA3) as an activator of the involution of the mammary gland. One milligram of recombinant M-SAA3 and the corresponding negative controls (saline solution and lipopolysaccharide) were infused into the mammary gland via the teat canal, and mammary secretion samples were taken during the first 3 d after drying off to analyze metalloproteinase activity, somatic cell count, protein, and fat contents. Primary mammary gland epithelial cell cultures and bovine dendritic cells, obtained from necropsy tissue and blood, respectively, were incubated with and without M-SAA3 and cytokine expression was quantified. Last, the protective role of the M-SAA3 against infections was evaluated after a Staphylococcus aureus challenge. Matrix metalloproteinase 9 activity, a key protein that directly participates in the onset of the involution process, was greater in quarters treated with the M-SAA3. Protein content was increased in mammary secretions compared with control quarters. M-SAA3 increased cytokines directly related to innate immunity in both epithelial and dendritic cells and reduced the infection by Staphylococcus aureus.  相似文献   

13.
The efficacy of an Escherichia coli J5 bacterin for reducing the incidence of intramammary infections and clinical signs of mastitis was tested in first lactation heifers. Ten primigravid heifers were immunized with an E. coli J5 bacterin. Four heifers received a placebo. The bacterin and placebo were injected subcutaneously approximately 60 d prior to calving, 28 d later, and within 48 h after calving. Vaccinated and placebo-injected heifers were challenged by intramammary infusion of E. coli 727 in one mammary gland between 23 and 37 d after calving. All challenged quarters were diagnosed with an intramammary infection within 6 h after bacteria were infused. The severity and duration of local signs of clinical mastitis were reduced in vaccinated heifers compared with placebo-injected heifers. Systemic signs of clinical mastitis were limited and did not differ between treatment groups. Bacteria counts in milk from challenged quarters were lower in vaccinated heifers than in control heifers at 12, 15, and 48 h after challenge. Serum immunoglobulin G titers against whole-cell E. coli J5 antigen at calving were higher in vaccinated heifers than they were in controls. Vaccinated heifers had higher immunoglobulin G titers than did controls in mammary secretions at calving and immediately prior to challenge. Immunization of primigravid heifers with an E. coli J5 bacterin during the last trimester of gestation and at calving reduced the severity and duration of clinical signs following intramammary challenge with a heterologous strain of E. coli.  相似文献   

14.
High energy intake and excessive body fatness impair mammogenesis in prepubertal ruminants. High energy intake and excessive fatness also increase serum leptin. Our objective was to determine if an infusion of leptin decreases proliferation of mammary epithelial cells of prepubertal heifers in vivo. Ovine leptin at 100 μg/quarter per d with or without 10 μg of insulin-like growth factor (IGF)-I was infused via the teat canal into mammary glands of prepubertal dairy heifers; contralateral quarters were used as controls. After 7 d of treatment, bromodeoxyuridine was infused intravenously and heifers were slaughtered ∼2 h later. Tissue from 3 regions of the mammary parenchyma was collected and immunostained for bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (Ki-67), and caspase-3. Leptin decreased the number of mammary epithelial cells in the S-phase of the cell cycle by 48% in IGF-I-treated quarters and by 19% in saline-treated quarters. Leptin did not alter the number of mammary epithelial cells within the cell cycle, as indicated by Ki-67 labeling. Caspase-3 immunostaining within the mammary parenchyma was very low in these heifers, but leptin significantly increased labeling in saline-treated quarters. Leptin enhanced SOCS-3 expression in IGF-I-treated quarters but did not alter SOCS-1 or SOCS-5 expression. We conclude that a high concentration of leptin in the bovine mammary gland reduces proliferation of mammary epithelial cells. The reduced proliferation is accompanied by an increase in SOCS-3 expression, suggesting a possible mechanism for leptin inhibition of IGF-I action. Whether leptin might be a physiological regulator of mammogenesis remains to be determined.  相似文献   

15.
This study investigated the effect in heifers of infusion of a bismuth subnitrate teat-canal sealant and bacterial intramammary infection (IMI) precalving on prevalence of postcalving IMI and incidence of clinical mastitis in the first 2 wk postcalving. Glands (n = 1,020) from heifers (n = 255) in 5 seasonally calving, pasture-fed dairy herds were randomly assigned within heifer to 1 of 4 treatment groups (no treatment; mammary gland secretion collection; infusion of a teat sealant; or sample collection with infusion of teat sealant). Heifers within a herd were enrolled on one calendar day, 31 d on average before the planned start of the seasonal calving period. Duplicate milk samples were collected from each gland within 4 d after calving for bacterial culture. Herd owners collected duplicate milk samples, before treatment, for bacterial culture from glands they defined as having clinical mastitis. The gland prevalence of IMI precalving was 15.5% and did not differ between herds. Bacteria isolated precalving included coagulase-negative staphylococci (76.9% of all bacteriologically positive samples), Streptococcus uberis (14.1%), Staphylococcus aureus (5.1%), Corynebacterium spp. (3.8%), and others (0.1%). The presence of an IMI precalving increased the risk of an IMI postcalving 3.6-fold and the risk of clinical mastitis 4-fold, relative to no IMI precalving. Infusion of the teat sealant reduced the risk of postcalving IMI due to Strep. uberis by 84%, and of clinical mastitis by 68%. Sampling the glands precalving had no effect on postcalving IMI or on clinical mastitis incidence. Use of an internal teat canal sealant in heifers precalving may be a useful tool for reducing the risk of subclinical and clinical mastitis in heifers.  相似文献   

16.
As part of a project to identify the pathophysiological cause or causes of mastitic hypogalactia, midlactation cows were infused in two homolateral quarters with 10 micrograms of endotoxin while being milked four times daily to resolve better the temporal changes in mammary synthetic activity during endotoxin mastitis. Milk fat was decreased by the first milking (5 h) postinfusion and then recovered rapidly. In contrast, milk yield and the yields of protein and lactose were not significantly inhibited until the second milking, and these yields recovered slowly thereafter. The decline in milk yield by infused quarters was only 20% greater than the decline by uninfused quarters in this experiment. Mammary inflammation developed rapidly in infused quarters as milk serum albumin concentration was maximal at the first milking. Milk SCC and NAGase were also elevated at this time, and maximal levels occurred at milkings 2 to 4. Increased temperature, increased cortisol, and a mild anorexia were apparent at the first milking only. Endotoxin treatment had no effect on serum prolactin or glucose. These data suggest that the delayed hypogalactia is consequent to the mammary inflammation and systemic responses following endotoxin infusion. The results indicate that different pathophysiological events may inhibit synthesis of the different milk components.  相似文献   

17.
The hypothesis tested was that there are differences in pathogenicity between strains of Staphylococcus aureus that cause bovine mastitis. Mammary quarter milk somatic cell count (SCC) and N-acetyl-beta-D-glucosaminidase (NAGase) activity were used as indicators of the pathogenicity of different strains of S. aureus that infect the bovine udder. Eight commercial dairy herds with a history of S. aureus in bulk tank milk cultures were studied. Initially, composite foremilk samples were collected from all lactating cattle in each herd and cultured for staphylococci. Subsequently, all cows with a coagulase-positive staphylococcal intramammary infection (IMI) at the initial sampling that were still present in the herd of origin had individual mammary quarter foremilk samples collected. Coagulase-positive staphylococcal isolates were confirmed as S. aureus using a commercial biotyping system. Staphylococcus aureus isolates were strain-typed using pulsed-field gel electrophoresis. Mammary quarter milk SCC and N-acetyl-beta-D-glucosaminidase activity were determined for each cow. The difference in mean somatic cell count and mean NAGase activity for mammary quarters infected with the same strain of S. aureus and for uninfected quarters on the same cow was calculated. One-way analysis of variance was used to assess differences between strains within a herd. Overall, no significant differences were found between strains, suggesting that the degree of udder parenchymal injury induced by S. aureus IMI is in general significantly affected by factors other than strain type.  相似文献   

18.
The transition from the lactation to the dry period in dairy cows is a period of high risk for acquiring new intramammary infections. This risk is reduced when involution of mammary glands is completed. Consequently, strategies that accelerate the involution process after drying-off could reduce the incidence of mastitis. The objective of this study was to assess the effect of 3 different treatments on mammary gland involution. Each quarter of 8 Holstein cows in late lactation was randomly assigned at drying-off to an intramammary infusion of casein hydrolysate (CNH; 70 mg), ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA; 5.7 g), lactose (5.1 g), or saline 0.9% (control) solutions. Milk samples were collected on the last 2 d before and 1, 3, 5, 7, 10, and 14 d after the last milking for determining concentrations of mammary gland involution markers. Lactoferrin, somatic cell counts (SCC), BSA, and Na+ concentrations, as well as matrix metalloproteinase-2 and matrix metalloproteinase-9 activities gradually increased in mammary secretions during the first 2 wk following the last milking, whereas milk citrate and K+ concentrations decreased. As involution advanced, the Na+:K+ ratio increased, whereas the citrate:lactoferrin ratio decreased. Compared with mammary secretions from control quarters, mammary secretions of quarters infused with CNH had higher SCC on d 1, 3, 5, and 7, and greater BSA concentrations on d 1, 3, and 5. Similarly, the CNH treatment induced a faster increase in lactoferrin concentrations, which were greater than in milk from control quarters on d 3, 5, and 7 after drying-off. Milk citrate concentrations were unaffected by CNH but the citrate:lactoferrin ratio was lower in CNH-treated quarters on d 3 and 5 than in control quarters. Moreover, CNH treatment hastened the increase in Na+ concentration and in the Na+:K+ ratio on d 1. Infusion of CNH also led to an increase in proteolytic activities, with greater matrix metalloproteinase 9 activities on d 1 and 3. The EGTA infusion increased SCC above that of control quarters on d 1 and 3 but it had no effect on the other parameters. Lactose infusion had no effect on any of the involution markers. In this study, intramammary infusions of CNH were the most efficient treatment to accelerate mammary gland involution, suggesting a potential role of CNH as a local milk secretion inhibitor during milk stasis.  相似文献   

19.
Mastitis, caused by bacterial infection of the mammary gland, is a major disease of dairy cattle. The greatest risks of intramammary infection occur at the end of lactation and at the initiation of the next lactation when the cow calves. Treating serum with zymosan (yeast cell wall preparation) causes the complement to cleave, allowing this serum to serve as a source of complement fragment 5a (C5a), a potent chemoattractant and activator of the immune system. Our hypothesis was that intramammary infusion of zymosan-treated serum (ZTS) would recruit polymorphonuclear neutrophils (PMN) and generate prolonged activity in lymphocytes within the mammary gland. Ultimately this could help prevent bacterial infections in cows at dry-off and at the initiation of lactation. Two ipsilateral quarters of the mammary gland of each cow were infused with ZTS (12.5 mL/quarter), and 2 contralateral quarters were infused with saline in 8 cows shortly after lactation ended. Mammary secretions were collected periodically throughout the dry period and the first 2 wk of the next lactation. Activation status of lymphocytes and PMN in those secretions was assessed based on the intracellular presence or absence of IFN-γ and IL-8 as determined by flow cytometry. The ZTS infusion greatly increased PMN numbers in mammary secretions for the first week only. The percentage of IFN-γ positive lymphocytes and PMN, and the percentage of IL-8 positive PMN, exhibited a sustained increase in secretions from ZTS-treated quarters through the first 2 wk of lactation. The ZTS can stimulate PMN and lymphocyte-mediated immune defense mechanisms in the mammary gland, which may provide a useful means of preventing new intramammary infections during the dry period as well as at the initiation of lactation.  相似文献   

20.
Dairy cattle with clinical mastitis caused by Escherichia coli exhibit a wide range of disease severity, from mild, with only local inflammatory changes of the mammary gland, to severe, with significant systemic derangement. The present study was designed to examine the relationship between serotype and virulence genes of E. coli mastitis isolates, different levels of systemic disease severity, and farm from which the E. coli strain was obtained. One hundred twenty-three E. coli milk isolates were obtained from cows with clinical mastitis of varying systemic disease severity from 6 different farms. No predominant serotype was identified by farm or by systemic disease severity; however, the most frequent serotype, O158:NM (n = 3), was isolated from cows in the moderate severity group. Virulence genes evaluated were identified infrequently and were not associated with systemic disease severity. Evaluation of genetic similarity showed no clustering assigned by farm or mastitis severity based on systemic disease signs. We concluded that a high degree of genotypic variability is characteristic of E. coli strains causing clinical mastitis within and between different farms and systemic severity groups, and that specific cow factors probably play a more important role in determining systemic disease severity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号