首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The performance of an excavation support system for a subway station renovation project in Chicago and its effects on an adjacent, shallow-foundation supported building are presented. The 13-m-deep excavation was made through soft to medium stiff clays and was supported by a 900-mm-thick secant pile wall, one level of cross-lot bracing, and two levels of tiebacks. Design considerations are discussed and construction procedures are summarized. Field performance data were collected, including lateral soil movements at five locations, building settlements along the exterior wall and interior columns, support system loads, and observations of building damage. As planned in the design, minor damage occurred to nonload bearing portions of the building. Of the 38 mm of maximum lateral movement adjacent to the building, 9 mm occurred during wall installation, 16 mm developed as the soil was excavated, and 13 mm occurred during tunnel demolition and station renovation as a result of soil creep and reduction of wall stiffness. Settlements extended beyond the secant pile wall a distance approximately equal to the depth of the secant pile wall. The effect of excavation was to cause larger settlements within the affected zone, but not to expand the width of the settlement trough. When distortions exceeded approximately 1/960, damage began to manifest itself in the nonload bearing portions of the building.  相似文献   

2.
Diaphragm walls are built to exclude earth and water from an area so that work may be performed under reasonably dry conditions. The range of applications for diaphragm walls includes earth-retaining and load-bearing walls for a variety of constructs such as underpasses, deep basements, underground stations, tunnels docks, and pump houses. In traditional construction methods, the concrete diaphragm wall consists of separate panels, which are not formed as a continuous monolithic construction. Vertical joints are used to divide the wall into panels, and horizontal reinforcement is not continuous from one panel to the next. Recently, a diaphragm wall, believed to be one of the largest ever built, was successfully constructed in Egypt with a continuous horizontal reinforcement. This paper describes in detail a new construction method for a diaphragm wall system. In addition, the difficulties encountered during construction are highlighted. Movements of the wall during excavation are reported. A comparison between the new and traditional construction methods is carried out in terms of cost and schedule. Applying the method presented in this paper offers substantial opportunity for reducing the steel reinforcement requirement and eliminating the use of shoring systems or ground anchors.  相似文献   

3.
Many soil retaining walls, which were used to stabilize highway embankments constructed on hillside, were severely damaged during the major earthquake (Chi-Chi earthquake, ML = 7.3) on September 21, 1999 in Taiwan. We investigated two typical cases of soil retaining wall damage using survey, soil borings and soil tests. To this end we developed a new pseudo-static method to evaluate the seismic stability of retaining walls situated on slope. Sliding failure along the wall base and bearing capacity failure in the foundation slope were considered in the new pseudo-static method. Results of the analysis showed that seismic stability of the wall against bearing capacity failure may be greatly overestimated when the inertia of soil mass is not taken into account. The analytical results also showed that sliding failure along the wall base occurs prior to the bearing capacity failure of the wall situated on a gentle slope at Site 1. The opposite is true for the wall situated on a steep slope at Site 2. For soil retaining walls constructed on slope, sliding failure of the wall may occur under small input horizontal ground acceleration when the passive resistance in front of the wall is not effectively mobilized. This highlights the importance of improving the strength of backfilled soils in the passive zone when constructing soil retaining walls on slope. The results obtained in the present study also suggest a modification of the current design considerations for soil retaining walls situated on slope.  相似文献   

4.
A series of centrifuge model tests was conducted to investigate the behavior of pile groups of various sizes and configurations behind a retaining wall in very soft clay. With a 1.2-m excavation in front of the wall, which may simulate the initial stage of an excavation prior to strutting, the test results reveal that the induced bending moment on an individual pile in a free-head pile group is always smaller than that on a corresponding single pile located at the same distance behind the wall. This is attributed to the shadowing and reinforcing effects of other piles within the group. The degree of shadowing experienced by a pile depends on its relative position in the pile group. With a capped-head pile group, the individual piles are forced to interact in unison though subjected to different magnitudes of soil movement. Thus, despite being subjected to a larger soil movement, the induced bending moment on the front piles is moderated by the rear piles through the pile cap. A finite element program developed at the National University of Singapore is employed to back-analyze the centrifuge test data. The program gives a reasonably good prediction of the induced pile bending moments provided an appropriate modification factor is applied for the free-field soil movement and the amount of restraint provided by the pile cap is properly accounted for. The modification factor applied to the free-field soil movement accounts the reinforcing effect of the piles on the soil movement.  相似文献   

5.
采用有限元分析软件ABAQUS建立了非均质土中海上风电单桩基础数值计算模型,将桩基础受到的波浪、洋流及风荷载等效成双向对称循环荷载,对水平循环荷载作用下桩身水平位移、桩身剪力、桩身弯矩和桩侧土抗力进行了研究,并对不同循环次数下桩身水平位移进行了对比分析。研究表明,桩身水平位移随时间变化逐渐累积,随着循环次数的增加,泥面处桩身最大位移发生的时间点滞后;桩身剪力出现负值;桩身弯矩最大值发生在浅层土体;桩身外壁土抗力曲线随时间的变化在埋深约2/3处出现分界点,分界点上下范围内土抗力变化规律正好相反,在淤泥土和粉砂土分界面处增加显著;不同时间点桩身内壁沿埋深承担的荷载基本不变。   相似文献   

6.
This paper presents a seismic displacement criterion for conventional soil retaining walls based on the observations of a series of shaking table tests and seismic displacement analysis using Newmark’s sliding-block theory taking into account internal friction angle mobilization along the potential failure line in the backfill. A novel approach that relates the displacement of the wall and the mobilized friction angle along the shear band in the backfill is also proposed. A range of horizontal displacement-to-wall height ratios (δ3h/H) between 2 and 5% representing a transitional state from moderate displacement to catastrophic damage were observed in the shaking table tests on two model retaining walls. This observation is supported by both Newmark’s displacement analysis and a new approach that relates the movement of the wall to the mobilization of the friction angle along the shear band in the backfill. A permissible displacement of the wall as defined by the displacement-to-wall height ratio, namely, δ3h/H, equal to 2% was found to be of practical significance in the sense that peak friction angle of the investigated sand is retained along the shear band in the backfill. It is also suggested that δ3h/H = 5% be used as a conservative indicator for the onset of catastrophic failure of the wall associated with fully softened soil strength along the shear band in cohesionless backfill.  相似文献   

7.
This paper presents the results of centrifuge model tests on unstrutted deep excavation in dense sand and its influence on an adjacent single pile foundation behind the retaining wall. It is found that, in the case of a stable wall, the induced pile bending moment and deflection decrease exponentially with increasing distance between the pile and the wall. Pile head boundary condition plays an important role in affecting the pile responses due to an adjacent excavation. In the case of retaining wall collapse, the failure pattern of the soil behind the wall features a slip plane projecting from near the wall toe to the ground surface. Soil within the failure zone demonstrates large lateral movement and induces significant bending moment and deflection on pile located within the zone. Soil movement and pile responses outside this zone are noted to be significantly less. A comparison between the experimental results and the theoretical predictions by an existing numerical method shows good agreement, provided that appropriate assumptions are made on the soil parameters and conditions, especially in the case of retaining wall collapse.  相似文献   

8.
A finite-element procedure was used to simulate the dynamic behavior of four full-scale reinforced soil retaining walls subjected to earthquake loading. The experiments were conducted at a maximum horizontal acceleration of over 0.8 g, with two walls subjected to only horizontal accelerations and two other walls under simultaneous horizontal and vertical accelerations. The analyzes were conducted using advanced soil and geosynthetic models that were capable of simulating behavior under both monotonic and cyclic loadings. The soil behavior was modeled using a unified general plasticity model, which was developed based on the critical state concept and that considered the stress level effects over a wide range of densities using a single set of parameters. The geosynthetic model was based on the bounding surface concept and it considered the S-shape load-strain behavior of polymeric geogrids. In this paper, the calibrations of the models and details of finite-element analysis are presented. The time response of horizontal and vertical accelerations obtained from the analyses, as well as wall deformations and tensile force in geogrids, were compared with the experimental results. The comparisons showed that the finite-element results rendered satisfactory agreement with the shake table test results.  相似文献   

9.
A series of centrifuge model tests has been conducted to investigate the behavior of a single pile subjected to excavation-induced soil movements behind a stable retaining wall in clay. The results reveal that after the completion of soil excavation, the wall and the soil continue to move and such movement induces further bending moment and deflection on an adjacent pile. For a pile located within 3?m behind the wall where the soil experiences large shear strain (>2%) due to stress relief as a result of the excavation, the induced pile bending moment and deflection reach their maximum values sometime after soil excavation and thereafter decrease slightly with time. For a pile located 3?m beyond the wall, the induced pile bending moment and deflection continue to increase slightly with time after excavation until the end of the test. A numerical model developed at the National University of Singapore is used to back-analyze the centrifuge test data. The method gives a reasonably good prediction of the induced bending moment and deflection on a pile located at 3?m or beyond the wall. For a pile located at 1?m behind the wall where the soil experiences large shear strain (>2%) due to stress relief resulting from the excavation, the calculated pile response is in good agreement with the measured data if the correct soil shear strength obtained from postexcavation is used in the analysis. However, if the original soil shear strength prior to excavation is used in the analysis, this leads to an overestimation of the maximum bending moment of about 25%. The practical implications of the findings are also discussed in this paper.  相似文献   

10.
This technical note describes the derivation of an analytical expression for the total active force on the retaining wall for c-? soil backfill considering both the horizontal and vertical seismic coefficients. The results based on this expression are compared with those obtained from earlier analytical expressions for the active force for c-? soil backfill under seismic conditions, and found to have a similar trend of variation. The parametric study shows that the inclination of the critical failure plane with the horizontal plane decreases with the increase in values of seismic coefficients; the decrease being more for their higher values. The total active force increases with the increase in value of horizontal seismic coefficient; while it decreases with the increase in value of vertical seismic coefficient except for a very high value of horizontal seismic coefficient. Design charts are presented for various combinations of horizontal and vertical seismic coefficients (kh and kv), and values of cohesion and angle of shearing resistance for estimating the total active force on the retaining wall for c-? soil backfill for practical applications.  相似文献   

11.
Vertical Excitation of Stochastic Soil-Structure Interaction Systems   总被引:1,自引:0,他引:1  
This paper considers two stochastic models for a soil-structure interaction problem with vertical propagation of P waves during strong earthquake motion. These models include the horizontal and vertical spatial variability of stiffness of the soil medium. The first model involves a two-dimensional stochastic Winkler foundation, which takes into account the horizontal variability of the soil. This model elucidates some experimental results obtained on a nuclear power station physical model built in Hualien (Taiwan). The second model is developed as a continuum system of random columns involving, this time, horizontal and vertical random characteristics of the soil medium. For both models a statistical analysis was performed with respect to determining probabilistic properties resonance frequencies and amplitudes of the corresponding transfer functions. The theoretical development and numerical results demonstrate the importance of considering soil variability for geotechnical design applications.  相似文献   

12.
The early gastric carcinomas measuring 10-25 mm in diameter, macroscopically I-II/C types and benign gastric tumours are relegated to laparoscopic wedge resection of the stomach. Authors report on the use of a new endoscopic assisted--"double-lifting"--laparoscopic resection of the gastric wall, in the course of removal of an early stage gastric carcinoma (13 mm in diameter, macroscopically II/C type) and a gastric lipoma (21 mm in diameter). The advantage of this method: the affected gastric wall could be removed safely far from the lesion and all layers of the gastric wall are available for histological examination.  相似文献   

13.
X-ray computed tomography (CT) of the eyeball and orbit revealed the cause of eye movement disorder in convergent strabismus fixus. The findings suggest that the disease can be diagnosed and treated at an early stage. Twelve cases of progressive esotropia with high myopia and 20 cases with normal visual acuity served as subjects in this study. The CT slice was parallel to the German horizontal plane, and the lens and medial and lateral rectus muscles were scanned. The average axial length of the affected eyes was significantly longer than in normal eyes. In progressive esotropia, the characteristic CT findings are an elongated eyeball, mechanical contact between the eyeball and lateral wall of the orbit, and a downward displacement of the lateral rectus muscle. Thus, it is reasonable to conclude that eye movement disorder in convergent strabismus fixus results from weakness of the lateral rectus muscle which has been displaced downward due to compression of the eyeball against the orbital wall.  相似文献   

14.
The mechanical behavior of many soils such as stiff clays depends on their current effective-stress states and stress history. For improving design and analysis of soil-structure interaction associated with deep excavations in these soils, it is important to understand effective-stress changes around excavations caused by both horizontal and vertical stress relief. In this paper, total and effective-stress variations adjacent to a diaphragm wall during construction of a 10-m-deep excavation in stiff fissured clay are reported and discussed. Interpreted field stress paths are compared with some relevant laboratory triaxial stress path tests, which simulate the horizontal and vertical stress relief in the field at an appropriate stress level. The interpreted field effective-stress paths in front of the wall are found to be similar to laboratory stress paths determined in undrained extension tests. Field stress paths behind the wall do not correspond particularly well with those from laboratory undrained compression tests, except when the stress state approaches active failure. The conventional undrained assumption does not seem to hold for the soil located immediately behind the wall during a relatively rapid excavation in the stiff clay.  相似文献   

15.
Bridge abutments typically contain a backwall element that is designed to break free of its base support when struck by a bridge deck during an earthquake event and push into the abutment backfill soils. Results are presented for a full-scale cyclic lateral load test of an abutment backwall configured to represent the dimensions (1.7?m height), boundary conditions, and backfill materials (compacted silty sand) that are typical of California bridge design practice. An innovative loading system was utilized that operates under displacement control and that assures horizontal wall displacement with minimal vertical displacement. The applied horizontal displacement ranged from null to approximately 11% of the wall height (0.11H). The maximum earth pressure occurred at a wall displacement of 0.03H and corresponded to a passive earth pressure coefficient of Kp = 16.3. The measured force distribution applied to the wall from hydraulic actuators allowed the soil pressure distribution to be inferred as triangular in shape and the mobilized wall-soil interface friction to be evaluated as approximately one-third to one-half of the soil friction angle. Post-test trenching of the backfill showed a log-spiral principal failure surface at depth with several relatively minor shear surfaces further up in the passive wedge. The ultimate passive resistance is well estimated by the log-spiral method and a method of slices approach. The shape of the load-deflection relationship is well estimated by models that produce a hyperbolic curve shape.  相似文献   

16.
This paper presents experimental data on the variation of lateral earth pressure against a nonyielding retaining wall due to soil filling and vibratory compaction. Air-dry Ottawa sand was placed in five lifts and each lift was compacted to achieve a relative density of 75%. Each compacted lift was 0.3?m thick. The instrumented nonyielding wall facility at National Chiao Tung University in Taiwan was used to investigate the effects of vibratory compaction on the change of stresses at the soil-wall interface. Based on the experimental data it has been found that, for a compacted backfill, the vertical overburden pressure can also be properly estimated with the traditional equation σv = γz. The effects of vibratory compaction on the vertical pressure in the backfill were insignificant. On the vertical nonyielding wall, extra horizontal earth pressure was induced by vibratory compaction. After compaction, the lateral earth pressure measured near the top of the wall was almost identical to the passive Rankine pressure. It is concluded that as the cyclic compacting stress applied on the surface of the backfill exceeded the ultimate bearing capacity of the foundation soil, a shear failure zone would develop in the uppermost layer of the backfill. For a soil element under lateral compression, the vertical overburden pressure remained unchanged, and the horizontal stress increased to the Rankine passive pressure. It was also found that the compaction-influenced zone rose with the rising compaction surface. The horizontal earth pressure measured below the compaction-influenced zone converged to the Jaky state of stress.  相似文献   

17.
We measured the eye movements of three sisters with Niemann-Pick type C disease who had a selective defect of vertical saccades, which were slow and hypometric. Horizontal saccades, and horizontal and vertical pursuit and vestibular eye movements were similar to control subjects. The initial movement of oblique saccades was mainly horizontal and most of the vertical component occurred after the horizontal component ended; this resulted in strongly curved trajectories. After completion of the horizontal component of an oblique saccade, the eyes oscillated horizontally at 10-20 Hz until the vertical component ended. These findings are best explained by models that incorporate separate feedback loops for horizontal and vertical burst neurons, and in which the disease selectively affects vertical burst neurons.  相似文献   

18.
 为了解决82B钢连铸坯表面出现渣沟的问题,以提高钢渣界面温度、改善保护渣的熔化与润滑效果为出发点,对连铸现场180 mm×180 mm小方坯结晶器建立三维数学模型,对比施加电磁搅拌工艺不同直通型浸入式水口下结晶器内流场和温度场分布。计算结果表明,当水口内/外径由40/100 mm变为30/70 mm后,水口两侧流速大于0.15 m/s的流场区域扩大,水平截面环流最大流速由0.44 m/s降低至0.42 m/s,这表明流股对四周壁面的冲刷作用减弱;钢液面最大流速由0.12 m/s增大至0.15 m/s,高温区域范围扩大。综合效果显示,水口内外径减小对结晶器内的流场影响较小,钢渣界面附近钢液温度提高。现场试验统计表明,水口内外径减小后,保护渣消耗量由吨钢0.189 kg提高到0.228 kg,钢液面处保护渣的熔化良好,润滑效果得到了改善。配合保护渣优化等措施,铸坯表面渣沟发生率明显下降,由改进前的40%~50%降低到改进后的1%以内。  相似文献   

19.
The excavation of soil for the construction of basements or cut-and-cover tunnels results in ground movements. One particular concern is that the excavation-induced lateral soil movements may adversely affect any nearby pile foundation. The lateral loads imposed by the soil movements induce bending moments and deflections in the pile, which may lead to structural distress and failure. This paper presents the results of an actual full-scale instrumented study that was carried to examine the behavior of an existing pile due to nearby excavation activities resulting from the construction of a 16 m deep cut-and-cover tunnel. The pile was located 3 m behind a 0.8 m thick diaphragm wall. Excavation to the formation level that was 16 m below the ground surface resulted in a maximum lateral pile movement of 28 mm. A simplified numerical procedure based on the finite-element method was used to analyze the pile response. Generally, the theoretical predictions were in reasonable agreement with the measured results.  相似文献   

20.
The failure of several 15-m wood trusses at the lower chord splice joint is described. These trusses were built in the early 1940s with 100-mm split-ring connectors at the splice. The general failure pattern was initially horizontal splitting at the end of the chord member in two places through the depth of the member. As the split progressed, the center plug would move out from the end of the member, with lateral movement as great as 15 mm. Ultimately, a tension failure occurred across the grain. The exact origin of the truss failures is unknown. The trusses were appropriately designed and had enough reserve capacity in the original design to compensate for the decrease in allowable stresses that has occurred since construction, including the use of No. 2 lumber instead of the specified select structural lumber. The best conjecture of the cause of failure would be that it was initiated by secondary stresses. The continuity of the bottom chord over several panels induced secondary tensile stresses perpendicular to the grain at the splice. Additional tensile stresses perpendicular to the grain from drying shrinkage restrained by the split rings contributed to the initial horizontal splitting. Contributing to the development of the failure were probably the load-duration effects and perhaps higher temperatures. Despite the distress observed, there is no immediate danger of collapse. Lateral in-plane restraint at the truss ends from columns and adjacent portions of the building enable an arching mechanism to form that gives stability to the trusses even in a distressed state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号