首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The design of a compacted soil liner that includes sorptive amendments is presented and evaluated as a combinatorial optimization problem. An objective function based on the materials costs, opportunity costs, and construction costs of the liner was used to evaluate the effect of incorporating four sorptive materials: benzyltriethylammnonium-bentonite, hexadecyltrimethylammonium-bentonite, shale, and granular activated carbon (GAC) into a compacted clay liner in order to mitigate transport of organic solutes through the liner. The results from this study indicate that the inclusion of sorptive amendments as a component in compacted soil liners can effectively retard the transport of organic contaminants through the liner without violating regulatory hydraulic conductivity requirements. In all cases when aqueous transport was considered as a constraint in the objective function formulation, the resulting liner always contained some amount of sorptive amendment. In general, shale and GAC were selected for use in the sorptive liner design for all organic solutes tested. The modeling framework presented in this study is general and could be used to evaluate other types of sorptive materials or additional constraints, and thus represents a flexible new tool for the design of compacted soil liners.  相似文献   

2.
Transit-Time Design for Diffusion through Composite Liners   总被引:2,自引:0,他引:2  
Transit-time design methods are presented in this paper for determining the design thickness for composite liners consisting of a geomembrane and a compacted soil liner or geosynthetic clay liner. The design methods are based on a closed-form analytical solution for transient solute diffusion of volatile organic compounds in a composite liner and results from a numerical model. An analytical solution for diffusion in a two-layer soil profile, which is useful for transit-time design of composite liners, is also presented. The analytical solutions are used to develop graphical solution charts that can be used to design composite liners for which the effluent concentration and contaminant flux are less than a specified value. Design examples are included for a composite liner having a compacted soil liner and a composite liner having a geosynthetic clay liner. The method is relatively simple to apply and can be used for preliminary design of composite liners, evaluating experimental results, and verifying more complex numerical models.  相似文献   

3.
A composite liner composed of a soil/clay liner and a flexible membrane is widely used for waste containment facilities. In this research, an organically modified clay (organoclay BB-40) liner and a high-density polyethylene (HDPE) membrane were studied for preventing the leakage and migration of gasoline from underground storage tanks into the surrounding environment. The equivalent hydraulic conductivity of intact HDPE to gasoline was determined using a specially built system, and the conventional hydraulic conductivity testing method was employed to determine the hydraulic conductivity of compacted organoclays and the permeation rate of gasoline through composite liners. The equivalent hydraulic conductivity of intact HDPE to gasoline was about 10–13 cm/s, and the hydraulic conductivity of the organoclay liner was approximately 6.0×10?9?cm/s, which is nearly 4 orders of magnitude lower than that obtained for unmodified clay. These results show that both organoclay and HDPE are effective in reducing the release of gasoline by advective flow, especially the intact HDPE. The flow of gasoline through the composite liners under the worst condition, was of the same magnitude as that through a single organoclay liner, independent of the flow shape. It can be anticipated that under good contact conditions, the defective HDPE would still be beneficial in reducing the permeation of gasoline due to the decrease of the wetted area of the underlying layer exposed to gasoline leakage.  相似文献   

4.
A 13-year study of tritium transport through a field-scale earthen liner was conducted by the Illinois State Geological Survey to determine the long-term performance of compacted soil liners in limiting chemical transport. Two field-sampling procedures (pressure-vacuum lysimeter and core sampling) were used to determine the vertical tritium concentration profiles at different times and locations within the liner. Profiles determined by the two methods were similar and consistent. Analyses of the concentration profiles showed that the tritium concentration was relatively uniformly distributed horizontally at each sampling depth within the liner and thus there was no apparent preferential transport. A simple one-dimensional analytical solution to the advective–dispersive solute transport equation was used to model tritium transport through the liner. Modeling results showed that diffusion was the dominant contaminant transport mechanism. The measured tritium concentration profiles were accurately modeled with an effective diffusion coefficient of 6×10?4?mm2/s, which is in the middle of the range of values reported in the literature.  相似文献   

5.
浅析离子交换法生产钼酸铵的氨氮治理   总被引:1,自引:0,他引:1  
探讨了离子交换法生产钼酸铵的氨氮平衡测算,进行了离子交换法生产钼酸铵中含氨溶液的加热加碱脱氨小型试验。试验表明,在一定的工艺条件下,能有效地脱除含氨溶液中的NH4-N,脱除率达99%以上,外排废水达到了GB8978-1996要求的二级标准。  相似文献   

6.
A field-scale compacted soil liner was constructed at the University of Illinois at Urbana-Champaign by the U.S. Environmental Protection Agency (USEPA) and Illinois State Geological Survey in 1988 to investigate chemical transport rates through low permeability compacted clay liners (CCLs). Four tracers (bromide and three benzoic acid tracers) were each added to one of four large ring infiltrometers (LRIs) while tritium was added to the pond water (excluding the infiltrometers). Results from the long-term transport of Br? from the localized source zone of LRI are presented in this paper. Core samples were taken radially outward from the center of the Br? LRI and concentration depth profiles were obtained. Transport properties were evaluated using an axially symmetric transport model. Results indicate that (1) transport was diffusion controlled; (2) transport due to advection was negligible and well within the regulatory limits of ksat ? 1×10?7?cm/s; (3) diffusion rates in the horizontal and vertical directions were the same; and (4) small positioning errors due to compression during soil sampling did not affect the best fit advection and diffusion values. The best-fit diffusion coefficient for bromide was equal to the molecular diffusion coefficient multiplied by a tortuosity factor of 0.27, which is within 8% of the tortuosity factor (0.25) found in a related study where tritium transport through the same liner was evaluated. This suggests that the governing mechanisms for the transport of tritium and bromide through the CCL were similar. These results are significant because they address transport through a composite liner from a localized source zone which occurs when defects or punctures in the geomembrane of a composite system are present.  相似文献   

7.
The effects of ammonium nitrate, ammonium chloride, ammonium sulfate, and sodium nitrate on survival and growth of Pacific treefrog (Pseudacris regilla) and African clawed frog (Xenopus laevis) embryos were determined in static-renewal tests. The 10-day LC50s for the three ammonium compounds for P. regilla ranged from 25.0-32. 4 mg/L NH4 -N. The 10-day sodium nitrate LC50 for P. regilla was 578. 0 mg/L NO3-N. LC50s for X. laevis exposed for 4 or 5 days to the three ammonium compounds ranged from 27.5-60.2 mg/L NH4-N. The sodium nitrate LC50 for X. laevis ranged from 438.4-871.6 mg/L NO3-N. The lowest LOAEL based on length or weight was 6.1 mg/L NH4-N for the two species. The lowest LOAELs for NO3-N were 111.1 mg/L for P. regilla and 56.7 mg/L for X. laevis. Calculated unionized NH3 comprised 0.5-1.8% of measured NH4-N concentrations. Potential harm to amphibian populations could occur if NH4-N and NO3-N in agricultural runoff or drainage impacts sensitive life stages for a sufficiently long period.  相似文献   

8.
以废弃铬渣厂及其周边表层土壤为研究对象,采集5个区域土壤样品,运用高通量测序技术,揭示了表层土壤微生物多样性及其环境主要影响因素之间的关系。结果表明,有机质(SOM)、总磷(TP)、速效磷(AP)、速效氮(AN)和铵态氮(NH4+-N)含量均在下游最高、车间最低。门水平上,Actinobacteria、Proteobacteria、Acidobacteria和Chloroflexi为优势菌种;纲水平上,Alphaproteobacteria、Actinobacteria、Vicinamibacteria、Gemmaproteobacteria和Chloroflexi为优势菌种。总体来看,在重金属与土壤环境因子共同作用下,微生物丰度更倾向于受土壤环境因子的影响,其中TP、硝态氮(NO3+-N)和大多数重金属元素是微生物变化的主要影响因素;Actinobacteria与大多数重金属具有趋同性,对重金属耐受能力最强;金属元素Pb对细菌的生长繁衍存在一定的选择性,即金属元素的不同对土壤细菌类群的影响有差异。综上,废弃厂区修复治理过程中应考虑营养元素的投入与优势菌种的选择。本文研究加深了对重金属污染土壤微生物的变化及其驱动因子的了解,为废弃铬渣厂受污染的土壤修复提供理论依据。  相似文献   

9.
Comparison of Solute Transport in Three Composite Liners   总被引:2,自引:0,他引:2  
Three composite landfill liners were compared in this study based on leakage rate, mass flux, and sorptive capacity. One composite liner consisted of a geomembrane and a geosynthetic clay liner (GCL). The other two had a geomembrane and a thicker soil barrier (61 or 122 cm). The analyses employed one- and three-dimensional numerical models that were developed for analyzing contaminant transport through defects in the geomembrane component of composite liners and diffusion of volatile organic compounds through intact composite liners (i.e., composite liners without holes in the geomembrane). Cadmium was used to represent inorganic leachate constituents and toluene was used to represent organic leachate constituents. The composite liner, having a GCL had the lowest leakage rate of the three composite liners. For cadmium, the mass flow rate and sorptive capacity for the three composite liners varied within an order of magnitude. However, for toluene, the mass flux from the GCL composite liner was two to three orders of magnitude greater than that through composite liners having a thicker soil liner. Additionally, for leachate having similar concentrations of cadmium and toluene, the mass flux of toluene can be as much as seven orders of magnitude greater than that for cadmium. For toluene, the sorptive capacity of thicker liners was an order of magnitude greater than that for the GCL composite liner. Similar behavior is expected for other inorganic and organic solutes.  相似文献   

10.
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10?9?m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4×10?10?m2/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH 1 but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3–2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.  相似文献   

11.
Predicting Leakage through Composite Landfill Liners   总被引:1,自引:0,他引:1  
Leakage through composite landfill liners having various characteristics was analyzed using existing analytical and numerical models developed for the study. Three-dimensional numerical models were used to analyze leakage through circular defects and two-dimensional numerical models were used to analyze leakage from defective seams. Leakage rates predicted with the numerical models were compared to leakage rates predicted using existing equations and analytical models currently being used. These comparisons show that existing equations and analytical models all have limitations and no universal equation or method is available for predicting leakage rates. To overcome some of the deficiencies in the existing equations and models, new equations were developed based on results from the numerical models. Recommendations are made for using the new equations, existing equations, and analytical models to predict leakage rates in thick composite liners having a geomembrane overlaying a compacted soil liner and thin composite liners having a geomembrane overlaying a geosynthetic clay liner.  相似文献   

12.
An assessment of state-of-the-practice at five full-scale North American landfills operating as bioreactors is presented in this two-paper set. This paper focuses on effectiveness of liners and leachate collection systems, leachate generation rates, leachate recirculation practices and rates, effectiveness in moistening the waste, and settlement of the waste over time. Except in one case, the liner and leachate collection systems at the bioreactor landfills were similar to those used for landfills operated conventionally. Leachate generation rates increased approximately linearly with recirculation rate, but in all cases, the leachate generation rate was <300?L/m2?year. Leachate depths generally were maintained within regulatory requirements, even with the highest recirculation rates. Leakage rates from liners at bioreactor landfills, including alternative liner designs employing geosynthetic clay liners, are comparable to leakage rates from conventional landfills. Thus, based on the information gathered in this study, additional requirements or features for liners or leachate collection systems are not warranted for bioreactor landfills. Diminishing capacity of horizontal recirculation trenches is common. Experience at one landfill suggests that small doses at high frequency under substantial injection pressure can deter loss of trench capacity. Only those landfills that were aggressive in recirculation had achieved water contents near the field capacity. Increasing the amount of liquid that is added may be required to achieve field capacity at some landfills, particularly if a final cover is placed soon after waste grades are reached. The rate of time-dependent waste settlement attributed to biodegradation is about 1.6 times larger in bioreactor landfills than in conventional landfills, and increases as the recirculation dosage increases.  相似文献   

13.
An increase in atmospheric nitrogen (N) deposition can promote soil acidification,which may increase the release of ethylene (C2H4) under forest floors.Unfortunately,knowledge of whether increasing N deposition and C2H4 releases have synergistic effects on soil methane (CH4) uptake is limited and certainly deserves to be examined.We conducted some field measurements and laboratory experiments to examine this issue.The addition of (NH4)2SO4 or NH4Cl at a rate of 45 kg N ha-1 reduced the soil CH4 uptake under a temperate old-growth forest in northeast China,and there were synergistic effects of N amendments in the presence of C2H4 concentrations equal to atmospheric CH4 concentration on the soil CH4 uptake,particularly in the NH4Cl-treated plots.Effective concentrations of added C2H4 on the soil CH4 uptake were smaller in NH+4-treated plots than in KNO3-treated plots.The concentration of ca 0.3 μl C2H4 L-1 in the headspace gases reduced by 20% soil atmospheric CH4 uptake in the NH4Cl-treated plots,and this concentration was easily produced in temperate forest topsoils under short-term anoxic conditions.Together with short-term stimulating effects of N amendments and soil acidification on C2H4 production from forest soils,our observations suggest that knowledge of synergistic effects of NH+4,rather than NO-3,amendments and C2H4 on the in situ soil CH4 uptake is critical for understanding the role of atmospheric N deposition and cycling of C2H4 under forest floors in reducing global atmospheric CH4 uptake by forests.Synergistic functions of NH+4-N deposition and C2H4 release due to soil acidification in reducing atmospheric CH4 uptake by forests are discussed.  相似文献   

14.
The potential for the desiccation of clay liner component of composite liners due to temperature field generated by breakdown of organic matter in municipal solid waste landfills is examined using a model proposed by Zhou and Rowe. In these analyses, a set of fully coupled governing equations expressed in terms of displacement, capillary pressure, air pressure, and temperature increase are used, and numerical results are solved by using finite element method with a mass-conservative numerical scheme. The model results are shown to be in encouraging agreement with experimental data for a problem involving heating of a landfill liner. The fully coupled transient fields (temperature, horizontal stress change, suction head, and volumetric water content) are then examined for two types of composite liner system, one involving a geomembrane over a compacted clay liner (CCL) and the other involving a geomembrane over a geosynthetic clay liner (GCL). It is shown that there can be significant water loss and horizontal stress change in both the CCL and GCL liner even with a temperature increase as small as 20°C. The time to reach steady state decreases as boundary temperature increases. Under a 30°C temperature increase, it takes 5 years to reach the steady state water content with a GCL liner but 50 years with a CCL liner. The effects of various parameters, such as hydraulic conductivity and thickness of the liner, on the performance of the liner are discussed.  相似文献   

15.
Laboratory tests were conducted on three lateritic soil samples to illustrate some pertinent considerations in the design of compacted lateritic soil liners and covers. The three design parameters investigated are hydraulic conductivity, desiccation-induced volumetric shrinkage, and unconfined compressive strength. Test specimens were compacted at various molding water contents using four compactive efforts. The compaction conditions were shown to have some relationship with soil compaction using either the plasticity modulus or the plasticity product (i.e., clay index). For construction quality assurance purposes, the traditional approach was compared with the modern criterion. Deficiencies associated with the traditional approach for soil liners found in literature also apply to lateritic soils. Overall acceptable zones were constructed on the compaction plane to meet design objectives for hydraulic conductivity, volumetric shrinkage strains, and unconfined compressive strength. The line of optimums was identified as a suitable lower bound for overall acceptable zones of lateritic soils. The volumetric shrinkage strain was also identified as the second most important design parameter for lateritic soils. The shapes of the acceptable zones were affected by the fines contents of the soils.  相似文献   

16.
Scrap tire disposal is a problem of growing concern. One solution to this problem is innovative methods for the reuse and recycling of scrap tires. Based on batch isotherm tests, scrap tire chips have been identified to be good sorbents of volatile organic compounds (VOCs) and could be used as leachate drainage layer material in solid waste landfills and in other similar applications. To demonstrate the effects of tire chips on the leachate they come in contact with in a drainage layer over a liner, large-scale tank tests simulating the drainage layer and the clay liner and also field tests were performed. Two cells were constructed in a landfill: one with scrap tire chips and the other with gravel leachate collection layer. According to the results of the large-scale tank tests and field tests, shredded tire chips have a significantly positive impact on the quality of the leachate with which they come in contact. The use of scrap tires in landfills would reduce the magnitude of the current tire disposal problem (a 1 ha landfill requires approximately 300,000 tires to fill 0.3 m of a leachate collection layer) and convert one waste into a beneficial construction material and simultaneously mitigate the problem of VOC transport from through landfill liners.  相似文献   

17.
Membrane Behavior of Compacted Clay Liners   总被引:2,自引:0,他引:2  
The containment function of clay barriers used for waste containment applications (e.g., landfills) can be enhanced if such clays exhibit membrane behavior or the ability to restrict the migration of solutes (e.g., contaminants). In this regard, compacted specimens of a locally available natural clay known as Nelson Farm Clay (NFC), as well as NFC amended with 5% (dry weight) sodium bentonite, were evaluated for hydraulic conductivity, k, and the potential for membrane behavior. The membrane efficiencies of specimens of both soils compacted such that k was less than 10?7?cm/s were measured by establishing steady salt (KCl) concentration differences, ?ΔCo, ranging from 3.9 to 47 mM across the specimens in a flexible-wall cell under closed-system boundary conditions. The measured membrane efficiency for the unamended NFC was negligible (i.e., ≤ 1.4%), even though the k was suitably low (i.e., k<10?7?cm/s). In contrast, compacted specimens of the bentonite amended NFC exhibited not only lower k but also significant membrane behavior, with membrane efficiencies as high as 97.3% for ?ΔCo of 3.9-mM KCl. The results suggest that natural clays typically suitable for use as compacted clay liners (CCLs) are not likely to behave as semipermeable membranes unless the clay is amended with bentonite or the clay is inherently rich in high swelling clay minerals (e.g., sodium smectite). The potential benefit resulting from membrane behavior in a CCL constructed with the bentonite amended NFC is illustrated analytically in terms of liquid flux.  相似文献   

18.
Numerical experiments were conducted to understand the effect of geometric and transport characteristics of a geomembrane-geosynthetic clay liner (GM/GCL) composite liner on gas leakage rate through a circular defect in the geomembrane (GM). The originality of the approach proposed in this paper rests on the use of a new conceptual two-layered system for modeling of GM/GCL composite liners where the interface zone between the GM and geosynthetic clay liner (GCL) has been merged with the GCL cover geotextile and handled as one layer; the GCL bentonite layer was considered the second layer. The role of the carrier geotextile layer was ignored since it can be considered as a no pressure loss layer. Analysis of numerical simulation results shows the existence of a constitutive leakage flow surface which enables evaluation of the leakage flow state for different geometric and transport properties of GM/GCL composite liners. Furthermore, the determined surface was also exploited to evaluate gas leakage rates under the framework of the Forchheimer’s analytical solution. The gas leakage rate predictions were found to be in good agreement with experimental results obtained at different GCL moisture content.  相似文献   

19.
This paper presents a laboratory investigation to evaluate the capacity of alkaline residues to inhibit acid mine drainage. Column tests were used to evaluate the geochemical behavior of cement kiln dust (CKD) and red mud bauxite (RMB) used as covers, liners, or mixed with acid producing tailings and waste rocks. The most important indicators of neutralization are pH and the concentrations of metals in solution. Initial leachate pH of samples with an alkaline cover composed of 10% CKD or 10% of a mixture of CKD and RMB was low, but rapidly increased to near 7.0 and stabilized for the duration of this study. The use of alkaline materials as a liner had a positive effect on the reduction of Fe, SO4 and other metals such as Cu and Zn concentrations and the number of viable bacteria. In the cases where the alkaline layer was used as a liner or mixed with the waste rocks, near neutral pH values were rapidly reached in the leachate. However, in these columns the leachate pH values decreased over time.  相似文献   

20.
Movement of volatile organic compounds (VOCs) through compacted clay liners was investigated using laboratory-scale column and tank tests. Hydraulic conductivity of the compacted clay was not significantly impacted by the introduction of VOCs in concentrations up to 20 mg∕L. Soil-water partition coefficients of the seven VOCs tested had a strong logarithmic relationship with the octanol-water partition coefficient. Partition coefficients from batch tests were in good agreement with those measured directly on soil samples at the termination of the column∕tank tests. The VOCs were degraded in the clay, with estimated half-lives ranging from 2 to 116 days. Mechanical dispersion was not significant in the range of the hydraulic conductivities of the test specimens (i.e., <10?7 cm∕s). Effective molecular diffusion coefficients were mostly in 10?6 cm2∕s and generally decreased with increasing aqueous solubility. Mass transport parameters of VOCs in clay liners can be estimated from laboratory batch tests and properly prepared small-scale column tests. However, accounting for degradation of VOCs and minimizing the number of transport parameters that are simultaneously estimated from a single response-time record are important considerations for accurate determination of transport parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号