共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Liquefaction Resistance of Clean and Nonplastic Silty Sands Based on Cone Penetration Resistance 总被引:5,自引:0,他引:5
Liquefaction of granular soil deposits is one of the major causes of loss resulting from earthquakes. The accuracy in the assessment of the likelihood of liquefaction at a site affects the safety and economy of the design. In this paper, curves of cyclic resistance ratio (CRR) versus cone penetration test (CPT) stress-normalized cone resistance qc1 are developed from a combination of analysis and laboratory testing. The approach consists of two steps: (1) determination of the CRR as a function of relative density from cyclic triaxial tests performed on samples isotropically consolidated to 100 kPa; and (2) estimation of the stress-normalized cone resistance qc1 for the relative densities at which the soil liquefaction tests were performed. A well-tested penetration resistance analysis based on cavity expansion analysis was used to calculate qc1 for the various soil densities. A set of 64 cyclic triaxial tests were performed on specimens of Ottawa sand with nonplastic silt content in the range of 0–15% by weight, and relative densities from loose to dense for each gradation, to establish the relationship of the CRR to the soil state and fines content. The resulting (CRR)7.5-qc1 relationship for clean sand is consistent with widely accepted empirical relationships. The (CRR)7.5-qc1 relationships for the silty sands depend on the relative effect of silt content on the CRR and qc1. It is shown that the cone resistance increases at a higher rate with increasing silt content than does liquefaction resistance, shifting the (CRR)7.5-qc1 curves to the right. The (CRR)7.5-qc1 curves proposed for both clean and silty sands are consistent with field observations. 相似文献
4.
Undrained Fragility of Clean Sands, Silty Sands, and Sandy Silts 总被引:9,自引:0,他引:9
S. Thevanayagam T. Shenthan S. Mohan J. Liang 《Canadian Metallurgical Quarterly》2002,128(10):849-859
In this paper, intergranular (ec) and interfine (ef) void ratios and confining stress are used as indices to characterize the stress–strain response of gap graded granular mixes. It was found that at the same global void ratio (e) and confining stress, the collapse potential (fragility) of silty sand increases with an increase in fines content (FC) due to a reduction in intergranular contact between the coarse grains. Beyond a certain threshold fines content (FCth), with further addition of fines, the interfine contact friction becomes significant. The fragility decreases and the soil becomes stronger. The value of FCth depends on e and the characteristics of fines and coarse grains. At FCFCth), fine grain friction plays a primary role and dispersed coarse grains provide a beneficial, secondary reinforcement effect. At the same ef, the collapse potential decreases with an increase in sand content. Beyond a certain limiting fines content, the soil behavior is controlled by ef only. An intergranular matrix diagram is presented that delineates zones of different behaviors of granular mixes as a guideline to determine the anticipated behavior of gap-graded granular mixes. New equivalent intergranular contact void ratios, (ec)eq and (ef)eq, are introduced to characterize the behavior of such soils, at FCFCth, respectively. 相似文献
5.
Michael K. Sharp Ricardo Dobry Tarek Abdoun 《Canadian Metallurgical Quarterly》2003,129(12):1083-1091
This paper presents the results of six centrifuge model tests of liquefaction and earthquake-induced lateral spreading of fine Nevada sand using an inclined laminar box. The centrifuge experiments simulate a gently sloping, 10 m thick stratum of saturated homogeneous sand of infinite lateral extent and relative densities ranging from 45 to 75%. Such idealized models approach some field situations and they provide significant general insight into the basic mechanisms and parameters influencing the lateral spreading phenomenon. The layer was subjected to lateral base shaking with prototype peak acceleration ranging from 0.20 to 0.41 g, a frequency of 2 Hz, and duration of approximately 22 cycles. The simulated field slope angle was 5°. The model deposits were all saturated with a viscous fluid 50 times more viscous than water, so that testing under the increased gravitational field (50 g) produced a deposit with the prototype permeability of the same fine-grained sand saturated with water in the field. Detailed discussions and comparisons of the six centrifuge tests are included. The observed effects of relative density Dr and input peak acceleration amax on the following measured parameters are summarized: thickness of liquefied soil H1, permanent lateral displacement DH, and ground surface settlement S. Comparisons and discussions are also presented on the effect of permeability for a Dr = 45% deposit. This is done by comparing the results reported herein using a viscous pore fluid, with other published centrifuge tests where a similar deposit using the same model soil, also tested at 50 g and shaken with the same input motion, was saturated with water, thus simulating a prototype sand having 50 times the permeability of the fine sand reported in this paper. 相似文献
6.
Data from over 30 sites in 5 countries are analyzed to develop updated factors for correcting liquefaction resistance for aged sand deposits. Results of cyclic laboratory tests on relatively undisturbed and reconstituted specimens suggest an increase in the correction factors of 0.12 per log cycle of time and an average reference age of 2 days for the reconstitute specimens. Laboratory and field test results combined with cyclic resistance ratio (CRR) charts suggest an increase in the correction factors of 0.13 per log cycle of time and an average reference age of 23 years. A reference age of 23 years seems appropriate for the commonly used CRR charts derived from field liquefaction and no liquefaction case history data. Because age of natural deposits is often difficult to accurately determine, a relationship between measured to estimated shear-wave velocity ratio (MEVR) and liquefaction resistance correction factor is also derived directly from the compiled data. This new MEVR-liquefaction resistance correction factor relationship is not as sensitive to MEVR as in the relationship derived indirectly in a previous paper. 相似文献
7.
A laboratory parametric study utilizing cyclic triaxial tests was performed to clarify the effects of nonplastic fines on the liquefaction susceptibility of sands. Studies previously published in the literature have reported what appear to be conflicting results as to the effects of silt content on the liquefaction susceptibility of sandy soils. The current study has shown that if the soil structure is composed of silt particles contained within a sand matrix, the resistance to liquefaction of the soil is controlled by the relative density of the soil and is independent of the silt content of the soil. For soils whose structure is composed of sand particles suspended within a silt matrix, the resistance to liquefaction is again controlled by the relative density of the soil, but is lower than for soils with sand-dominated matrices at similar relative densities. In this case, the resistance to liquefaction is essentially independent of the amount and type of sand. These findings suggest the need for further evaluation of the effects of nonplastic fines content upon penetration resistance, and the manner in which this relationship affects the simplified methods currently used in engineering practice to evaluate the liquefaction resistance of silty soils. 相似文献
8.
A general approach has been established to assess the undrained stress-strain curve and effective stress path under monotonic loading from drained triaxial tests. An appropriate formulation of a drained and drained rebounded (i.e., overconsolidated) triaxial test response is developed that, in turn, allows the assessment of developing liquefaction and the undrained behavior of saturated sands. The formulation presented is based upon reported experimental drained test results that were obtained from different investigators using different testing techniques. This formulation is a function of the confining pressure and basic properties of the sand, such as relative density, uniformity coefficient, and particle shape (roundness), which can be obtained from visual inspection. The approach is verified by comparing predicted and reported (observed) undrained behavior. The developed formulas allow one to predict the potential of sand to liquefy, the type of liquefaction, the peak and residual strength values, as well as the whole undrained stress-strain curve and effective stress path. The simplicity of this approach makes it an attractive general method to characterize the undrained behavior of sands in a preliminary analysis with no need to run sophisticated experimental tests. 相似文献
9.
It is well established that the main mechanism for the occurrence of liquefaction under seismic loading conditions is the generation of excess pore water pressure. Most previous research efforts have focused on clean sands, yet sand deposits with fines are more commonly found in nature. Previous laboratory liquefaction studies on the effect of fines on liquefaction susceptibility have not yet reached a consensus. This research presents an investigation on the effect of fines content on excess pore water pressure generation in sands and silty sands. Multiple series of strain-controlled cyclic direct simple shear tests were performed to directly measure the excess pore water pressure generation of sands and silty sands at different strain levels. The soil specimens were tested under three different categories: (1) at a constant relative density; (2) at a constant sand skeleton void ratio; and (3) at a constant overall void ratio. The findings from this study were used to develop insight into the behavior of silty sands under undrained cyclic loading conditions. In general, beneficial effects of the fines were observed in the form of a decrease in excess pore water pressure and an increase in the threshold strain. However, pore water pressure appears to increase when enough fines are present to create a sand skeleton void ratio greater than the maximum void ratio of the clean sand. 相似文献
10.
11.
The technique presented deals with the assessment, based on drained test behavior and formulation, of the undrained postcyclic stress-strain behavior of sands under limited or complete (full) liquefaction and its associated strength. At present, there is no particular procedure that allows assessment of such undrained postcyclic behavior that could develop full (pore-water pressure ratio, ru = 1) or limited (ru<1) liquefaction. The prediction of the undrained postliquefaction (full or limited liquefaction) response presented here is based on basic properties of sand such as its relative density (Drc) [or (N1)60 blowcount], the effective angle of internal friction (φ), the roundness of the sand grains (ρ), and the drained axial strain at 50% stress level (ε50). The technique presented accounts for the excess pore-water pressure induced by cyclic loading (Δuc) and the postcyclic excess pore-water pressure generated under undrained monotonic loading (Δud). 相似文献
12.
Pore Pressure Generation Models for Sands and Silty Soils Subjected to Cyclic Loading 总被引:4,自引:0,他引:4
Carmine P. Polito Russell A. Green Jongwon Lee 《Canadian Metallurgical Quarterly》2008,134(10):1490-1500
This paper discusses the applicability of two simple models for predicting pore water pressure generation in nonplastic silty soil during cyclic loading. The first model was developed by Seed et al. in the 1970s and relates the pore pressure generated to the cycle ratio, which is the ratio of the number of applied cycles of loading to the number of cycles required to cause liquefaction. The second model is the Green-Mitchell-Polito model proposed by Green et al. in 2000, which relates pore pressure generation to the energy dissipated within the soil. Based upon the results of approximately 150 cyclic triaxial tests, the writers show that both models are applicable to silty soils. A nonlinear mixed effects model was used for regression analyses to develop correlations for the necessary calibration parameters. The results show that the trends in both α and pseudoenergy capacity calibration parameters for the Seed et al. and Green et al. pore pressure generation models, respectively, differ significantly for soils containing less than and greater than ~ 35% fines, consistent with the limiting fines content concept. 相似文献
13.
The results from an experimental study on sands with high nonplastic silt content are presented. Drained and undrained triaxial compression tests, undrained cyclic triaxial tests, and drained∕undrained instability tests were performed on specimens of loose Nevada sand with 40% silt content. The behavior was observed to be somewhat different from previously published tests with sands at lower silt content. The greater silt content appears to provide a more volumetrically contractive response throughout the entire stress-strain curve. However, some aspects of the response were similar to sands with lower silt content. Monotonic undrained tests indicated “reverse” behavior, i.e., static liquefaction occurred at low confining pressures and increasing dilatant volume-change tendency was observed with increasing confining pressure. Analyzing the results using the concepts of steady state resulted in a unique steady-state line only when undrained tests were sheared from the same isotropic compression line. When specimens of different initial densities were tested at the same initial confining pressures, the resulting steady-state points did not fall on the same steady-state line. 相似文献
14.
Scott A. Ashford Kyle M. Rollins J. Dusty Lane 《Canadian Metallurgical Quarterly》2004,130(8):798-806
This paper describes a pilot test program that was carried out to determine the appropriate charge weight, delay, and pattern required to induce liquefaction for full-scale testing of deep foundations. The results of this investigation confirmed that controlled blasting techniques could successfully be used to induce liquefaction in a well-defined, limited area for field-testing purposes. The tests also confirmed that liquefaction could be induced at least two times at the same site with nearly identical results. Excess pore pressure ratios greater than 0.8 were typically maintained for at least 4 min after blasting. The test results indicate that excess pore pressure ratios produced by blasting could be predicted with reasonable accuracy when single blast charges were used. However, for multiple blast charges, measured excess pressures were significantly higher than would have been predicted for a single blast with the same charge weight. The measured particle velocity attenuated more rapidly with scaled distance than would be expected based on the upper bound relationship developed from previous case histories. Settlement was typically about 2.5% of the liquefied thickness, and about 85% of the settlement occurred within 30 min after the blast. Cone penetrometer test results show that blasting initially reduced the soil strength, but after several weeks the strength had substantially increased. 相似文献
15.
Use of Artificial Neural Networks in the Prediction of Liquefaction Resistance of Sands 总被引:1,自引:0,他引:1
A backpropagation artificial neural network (ANN) model has been developed to predict the liquefaction cyclic resistance ratio (CRR) of sands using data from several laboratory studies involving undrained cyclic triaxial and cyclic simple shear testing. The model was verified using data that was not used for training as well as a set of independent data available from laboratory cyclic shear tests on another soil. The observed agreement between the predictions and the measured CRR values indicate that the model is capable of effectively capturing the liquefaction resistance of a number of sands under varying initial conditions. The predicted CRR values are mostly sensitive to the variations in relative density thus confirming the ability of the model to mimic the dominant dependence of liquefaction susceptibility on soil density already known from field and experimental observations. Although it is common to use mechanics-based approaches to understand fundamental soil response, the results clearly demonstrate that non-mechanistic ANN modeling also has a strong potential in the prediction of complex phenomena such as liquefaction resistance. 相似文献
16.
Ronald D. Andrus Hossein Hayati Nisha P. Mohanan 《Canadian Metallurgical Quarterly》2009,135(6):735-744
Factors for correcting liquefaction resistance for aged sands using ratios of measured to estimated shear-wave velocity (MEVR) are derived in this paper. Estimated values of shear-wave velocity (VS) are computed for 91 penetration resistance-VS data pairs using previously published relationships. Linear regression is performed on values of MEVR and corresponding average age. Age of the sand layer is taken as the time between VS measurements and initial deposition or last critical disturbance. It is found that MEVR increases by a factor of about 0.08 per log cycle of time, and time equals about 6?years on average when MEVR equals 1 for the recommended penetration resistance-VS relationships. The resulting regression equation is combined with the strength gain equation reported by Hayati et al. 2008 in “Proc., Geotechnical Earthquake Engineering and Soil Dynamics IV,” to produce a MEVR versus deposit resistance correction relationship. This new corrective relationship is applied to create liquefaction resistance curves based on VS, standard penetration test blow count, and cone tip resistance for sands of various ages (or MEVRs). Because age of natural soil deposits is usually difficult to accurately determine, MEVR appears to be a promising alternative. 相似文献
17.
This paper examines the validity of the plasticity index (PI) as a criterion for estimating the liquefaction potential of clayey soils under cyclic loading. The results of undrained cyclic stress-controlled ring-shear tests on artificial mixtures of sand with different clays saturated with water indicated that an increase in PI decreased the soil potential to liquefy, and soil with PI>15 seemed to be nonliquefiable, a finding that is in agreement with the results of other researchers. However, in this study some deviations from this relation were found when a bentonite–sand mixture was treated with solutions of different ions, thus bringing into question the effectiveness of PI as a measure of the liquefaction potential of clayey soil having a certain pore water chemistry. 相似文献
18.
The effect of pore fluid viscosity on the stiffness, damping, and liquefaction characteristics of sands was investigated to assess the potential contributions to a centrifuge model seismic response for soils saturated with high-viscosity pore fluid. Resonant column tests with cyclic loading frequencies in the range of 20–45 Hz were performed on a variety of fluids and sand sizes. At a strain level less than 2 × 10?4, the damping increased with pore fluid viscosity and shear strain amplitude, and it decreased with sand particle size. However, at shear strain greater than about 2 × 10?4, the increased skeleton damping tended to mask any effect of additional damping due to fluid viscosity. The liquefaction tests on fine silica sand revealed that the increase in total energy dissipation was not more than 10% for 100 cS oil when compared with water at a driving frequency of 25 Hz. Based on the experimental results, a simple model is proposed to examine the dependency of viscous damping on pore fluid viscosity, loading frequency, particle size, and shear strain amplitude. 相似文献
19.
Characterization of Liquefaction Susceptibility of Sands by Means of Extreme Void Ratios and/or Void Ratio Range 总被引:1,自引:0,他引:1
The liquefaction susceptibility of various graded fine to medium saturated sands are evaluated by stress controlled cyclic triaxial laboratory tests. Cyclic triaxial tests are performed on reconstituted specimens having global relative density of 60%. In all cyclic triaxial tests, loading pattern is selected as a sinusoidal wave form with 1.0 Hz frequency and effective consolidation pressure is chosen as 100 kPa. Liquefaction resistance is defined as the required cyclic stress ratio causing initial liquefaction in 10 cycles during the cyclic triaxial test. The results are used to draw conclusions on the effect of the extreme void ratios and void ratio range on the liquefaction resistance of various graded sands. 相似文献
20.
Full-Scale Field Testing of Colloidal Silica Grouting for Mitigation of Liquefaction Risk 总被引:1,自引:0,他引:1
Patricia M. Gallagher Carolyn T. Conlee Kyle M. Rollins 《Canadian Metallurgical Quarterly》2007,133(2):186-196
This paper reports results of a full-scale field test to assess the performance of dilute colloidal silica stabilizer in reducing the settlement of liquefiable soil. Slow injection methods were used to treat a 2-m-thick layer of liquefiable sand. Eight injection wells were installed around the perimeter of the 9-m-diameter test area and 8% by weight colloidal silica grout was slowly injected into the upper 2?m of a 10-m-thick layer of liquefiable sand. A central extraction well was used during grout injection to direct the flow of the colloidal silica towards the center of the test area. Details of the field injection are described. Subsequently, the injection wells were used to install explosive charges and liquefaction was induced by blasting. After blasting, approximately 0.3?m of settlement occurred versus 0.5?m of settlement in a nearby untreated area. The mechanism of improvement is thought to be bonding between the colloidal silica and the individual sand particles; the colloidal silica gel encapsulates the soil structure and maintains it during dynamic loading. 相似文献