首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
3.
A yeast two-hybrid system was used to identify mutants of Max that exhibit an increased affinity for Myc. Truncated forms of the Max helix-loop-helix/leucine zipper motif (HLH/Zip) were first expressed in a two- hybrid system in which the bait protein was the HLH/Zip motif of Myc. Deletion of amino acids both amino-terminal and carboxy-terminal to the leucine zipper of Max reduced Myc/Max heterodimer formation as evidenced by a 160-fold reduction in the expression of the lacZ gene. A library of partially randomized sequences encoding this minimal leucine zipper of Max was then screened using the two-hybrid system. Mutant forms of the Max leucine zipper were identified whose affinities for Myc, as measured by beta-galactosidase activity in yeast lysates, were from 8- to 200-fold greater than the wild-type Max zipper. These Max mutants were shown to interact specifically with Myc and not with wild-type Max. Of 29 mutants analyzed, all had a unique amino acid sequence. This result illustrates the value of a genetic screen in the identification of a collection of mutant forms of the Max leucine zipper whose structures would not have been predicted based on principles of structure-based design.  相似文献   

4.
5.
6.
7.
The c-Myc protein (Myc) is involved in cellular transformation and mitogenesis, but is also a potent inducer of programmed cell death, or apoptosis. Whether these apparently opposite functions are mediated through common or distinct molecular mechanisms remains unclear. Myc and its partner protein, Max, dimerize and bind DNA in vitro and in vivo through basic/helix-loop-helix/leucine zipper motifs (bHLH-LZ). By using complementary leucine zipper mutants (termed MycEG and MaxEG), which dimerize efficiently with each other but not with their wild-type partners, we demonstrate that both cell cycle progression and apoptosis in nontransformed rodent fibroblasts are induced by Myc-Max dimers. MycEG or MaxEG alone are inactive, but co-expression restores ability to prevent withdrawal from the cell cycle and to induce cell death upon removal of growth factors. Thus, Myc can control two alternative cell fates through dimerization with a single partner, Max.  相似文献   

8.
9.
We have developed a bZIP protein, GBF-F, with both dominant-negative (DN) and gain-of-function properties. GBF-F is a chimera consisting of two components: the DNA binding (basic) region from the plant bZIP protein GBF-1 (GBF) and a leucine zipper (F) designed to preferentially heterodimerize with the C/EBP alpha leucine zipper. Biochemical studies show that GBF-F preferentially forms heterodimers with C/EBP alpha and thus binds a chimeric DNA sequence composed of the half-sites recognized by the C/EBP and GBF basic regions. Transient transfections in HepG2 hepatoma cells show that both components of GBF-F are necessary for inhibition of C/EBP alpha transactivation. When the C/EBP alpha leucine zipper is replaced with that of either GCN4 or VBP, the resulting protein can transactivate a C/EBP cis-element but is not inhibited by GBF-F, indicating that the specificity of dominant-negative action is determined by the leucine zipper. All known members of the C/EBP family contain similar leucine zipper regions and are inhibited by GBF-F. GBF-F also exhibits gain-of-function properties, since, with the essential cooperation of a C/EBP family member, it can transactivate a promoter containing the chimeric C/EBP/GBF site. This protein therefore has potential utility both as a dominant-negative inhibitor of C/EBP function and as an activator protein with novel DNA sequence specificity.  相似文献   

10.
11.
Williams syndrome (WS) is a contiguous gene deletion disorder caused by haploinsufficiency of genes at 7q11.23. We have shown that hemizygosity of elastin is responsible for one feature of WS, supravalvular aortic stenosis (SVAS). We have also implicated LIM-kinase 1 hemizygosity as a contributing factor to impaired visual-spatial constructive cognition in WS. However, the common WS deletion region has not been completely characterized, and genes for additional features of WS, including mental retardation, infantile hypercalcemia, and unique personality profile, are yet to be discovered. Here, we present a physical map encompassing 1.5 Mb DNA that is commonly deleted in individuals with WS. Fluorescence in situ hybridization analysis of 200 WS individuals shows that WS individuals have the consistent deletion interval. In addition, we identify three novel genes from the common deletion region: WS-betaTRP, WS-bHLH, and BCL7B. WS-betaTRP has four putative beta-transducin (WD40) repeats, and WS-bHLH is a novel basic helix-loop-helix leucine zipper (bHLHZip) gene. BCL7B belongs to a novel family of highly conserved genes. We describe the expression profile and genomic structure for each of these genes. Hemizygous deletion of one or more of these genes may contribute to developmental defects in WS.  相似文献   

12.
The PTC1 chimeric oncogene is generated by the fusion of the tyrosine kinase domain of the RET proto-oncogene to the 5'-terminal region of another gene named H4 (D10S170). This oncogene has been detected only in human papillary thyroid carcinomas. We have previously demonstrated that the putative leucine zipper in the N-terminal region of H4 can mediate oligomerization of the PTC1 oncoprotein in vitro. In this study, we further demonstrated that the PTC1 oncoprotein forms a dimer in vivo, and the leucine zipper is responsible for this dimerization. The H4 leucine zipper-mediated dimerization is essential for tyrosine hyperphosphorylation and the transforming activity of the PTC1 oncoprotein. Introducing a loss-of-function PTC1 mutant into PTC1-transformed NIH3T3 cells suppressed the transforming activity of PTC1 and reversed the transformed phenotype of these cells, presumably by forming inactive heterodimers between the two forms of PTC1. Taken together, these data indicate that constitutive dimerization of the PTC1 oncoprotein is essential for PTC1 transforming activity and suggest that constitutive oligomerization acquired by rearrangement or by point mutations may be a general mechanism for the activation of receptor tyrosine kinase oncogenes.  相似文献   

13.
14.
15.
16.
17.
18.
Hydrophobic interactions are responsible for stabilizing leucine zippers in peptides containing heptad repeats. The effects of substituting leucine by phenylalanine and alanine by glycine on the self-assembly of coiled-coils were examined in minimalist antimicrobial peptides designed to form amphipathic alpha-helices. The secondary structure of these peptides was monitored in solution and in diphosphocholine (DPC) micelles using circular dichroism spectroscopy. The leucine peptides (KLAKLAK)3 and (KLAKKLA)n (n = 3, 4) become alpha-helical with increasing concentrations of salt, peptide, and DPC. The aggregation state and equilibrium constant for self-association of the peptides were measured by sedimentation equilibrium. The glycine peptide (KLGKKLG)3 does not self-associate. The leucine peptides and phenylalanine peptides (KFAKFAK)3 and (KFAKKFA)n (n = 3, 4) are in a monomer-tetramer equilibrium in solution, with the phenylalanine zippers being 2-4 kcal/mol less stable than the equivalent leucine zippers. Thermodynamic parameters for the association reaction were calculated from the temperature dependence of the association constants. Leucine zipper formation has DeltaCp = 0, whereas phenylalanine zipper formation has a small negative DeltaCp, presumably due to the removal of the larger surface area of phenylalanine from water. Self-association of the peptides is coupled to formation of a hydrophobic core as detected using 1-anilino-naphthalene-8-sulfonate fluorescence. Carboxyfluorescein-labeled peptides were used to determine the aggregation state of (KLAKKLA)3 and (KLGKKLG)3 in DPC micelles. (KLAKKLA)3 forms dimers, and (KLGKKLG)3 is a monomer. Aggregation appears to correlate with the cytotoxicity of these peptides.  相似文献   

19.
20.
The active site sequence 385-YHWH-388 of ovine prostaglandin endoperoxide synthase-1 (PGHS-1) has residues critical for cyclooxygenase and peroxidase catalysis. Tyr385 is essential for cyclooxygenase activity, His386, for peroxidase activity, and His388, for both activities. To determine the importance of Trp387, we used site-directed mutagenesis to replace Trp387 of PGHS-1 with arginine, phenylalanine, and serine. W387R and W387S lacked significant activity. W387F retained both cyclooxygenase and peroxidase activities. Thus, we conclude that Trp387 is not essential for catalysis by PGHS-1. Purified PGHS-1 is a homodimer. There are two putative leucine zipper regions in ovine PGHS-1 involving residues 345-366 and 487-508. We tested for a role of these leucine zippers as determinants of dimer formation. Helix-breaking proline mutations were introduced at Leu359 or Leu501. Neither of these residues proved to be essential for peroxidase activity; but, mutations at each residue greatly reduced or eliminated cyclooxygenase activity. Both mutant proteins chromatographed as dimers on Sephacryl G-200. Thus, neither of these putative leucine zipper regions alone is responsible for PGHS-1 dimer formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号