首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A composite foam, polyurethane–melamine formaldehyde (PU/MF) foam, was prepared through foaming PU resins in the three‐dimensional netlike skeleton of MF foam. The chemical structure, morphology, cell size and distribution, flame retardancy, thermal properties and mechanical properties of such composite foam were systematically investigated. It was found that the PU/MF foam possessed better fire retardancy than pristine PU foam and achieved self‐extinguishment. Moreover, no melt dripping occurred due to the contribution of the carbonized MF skeleton network. In order to further improve the flame retardancy of the composite foam, a small amount of a phosphorus flame retardant (ammonium polyphosphate) and a char‐forming agent (pentaerythritol) were incorporated into the foam, together with the nitrogen‐rich MF, thus constituting an intumescent flame‐retardant (IFR) system. Owing to the IFR system, the flame‐retardant PU/MF foam can generate a large bulk of expanded char acting as an efficient shielding layer to hold back the diffusion of heat and oxygen. As a result, the flame‐retardant PU/MF foam achieved a higher limiting oxygen index of 31.2% and exhibited immediate self‐extinguishment. It exhibited significantly reduced peak heat release rate and total heat release, as well as higher char residual ratio compared to PU foam. Furthermore, the composite foam also showed obviously improved mechanical performance in comparison with PU foam. Overall, the present investigation provided a new approach for fabricating a polymer composite foam with satisfactory flame retardancy and good comprehensive properties. © 2018 Society of Chemical Industry  相似文献   

2.
Effective flame retardant strategy for open-cell foam (e.g., polyHIPE) remains of a great challenge. Herein, a void surface flame retardant strategy for polyHIPE was presented. An open-cell polystyrene (PS) polyHIPE was fabricated through an emulsion-templating technique. Polyphosphazene (PSZ), a highly efficient flame retardant polymer, was then in situ fabricated and covalently attached to the void surface of the foam to be a uniform flame retardant protective layer, while the open-cell structure of the foam was perfectly preserved. Compared with the pristine PS polyHIPE, the PSZ modified one had significantly improved thermal stability (char residues yield at 800°C increased from 3.36 to 16.53 wt%) and mechanical properties (Young's modulus increased by 2.6 times); the values of average heat release rate and total heat release of combustion were reduced by 62.36% and 41.57%, respectively. While, the value of limiting oxygen index was increased from 17.39% to 19.75%, owing to the combined action of condensed phase flame retardant and gas phase flame retardant. These results indicate that the in situ surface modification strategy is effective for improving the flame retardancy of highly interconnected polymer foams.  相似文献   

3.
Melamine–formaldehyde resin was modified by ethylene glycol to decrease the amount of free formaldehyde and extend the storage time. The modified resin (EMF) was further used to prepare microencapsulated ammonium polyphosphate (MCAPP). The structures of both EMF and MCAPP were well characterized. Afterward, EMF and MCAPP were mixed and coated on the surface of pre‐expanded polystyrene particles to prepare flame‐retardant expandable polystyrene foams (EPS). Both water resistance and impact strength were enhanced by the presence of MCAPP, and the flammability of the samples was also significantly improved. For the sample containing 75 phr MCAPP, the limiting oxygen index value was increased to 31.4% with a V‐0 rating in the UL‐94 vertical burning test. Cone calorimeter tests showed that the peak heat release rate of the sample declined sharply to 172.7 kW/m2, which is 81.6% lower than that of neat EPS. The smoke production of EPS foams during combustion was suppressed by the presence of MCAPP, and the thermal stability was also improved. Scanning electron microscopy showed that the char layer of the flame‐retardant sample after combustion became compact with negligible voids or cracks, which could further form an isolation barrier to prevent both heat and flame transfer. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46471.  相似文献   

4.
A series of flame‐retardant rigid polyurethane foams (RPUFs) containing dimethyl methylphosphonate (DMMP) and expandable graphite (EG) were prepared by box‐foaming. The RPUFs were characterized by thermogravimetric analysis (TGA), the limiting oxygen index (LOI), cone calorimeter, and scanning electron microscope (SEM). The decomposition process of DMMP was investigated by Pyrolysis‐Gas Chromatography/Mass Spectroscopy (Py‐GC/MS). Accordingly, their flame retardant behaviors and mechanism were also discussed. The results show that the DMMP/EG system can linearly enhance the LOI value from 19.2% of the pure RPUF to 33.0% of RPUFs containing 16 wt% flame retardant. In addition, the DMMP/EG system also remarkably increases yields of the residual char and drastically decreases the peak value of heat release rate (PHRR), heat release rate (HRR), total heat release (THR), total smoke release (TSR), and the yields of CO (COY). In the flame retardant RPUFs, when the matrix is ignited, the flame retardant DMMP should be decomposed to gaseous PO2 fragments, which can inhibit free radical chain reaction of flammable alkyl free radical from the decomposed matrix; whereas the flame retardant EG can rapidly expand and form loose and worm‐like expanding graphite char layer accordingly, which can hinder the heat transmission to the inner matrix and reduce decomposing velocity of matrix. After the combination of the two flame retardant effects, the DMMP/EG flame retardant system provides the matrix with better flame retardant effects than one of them does. Namely, it shows excellent gas‐condensed bi‐phase synergistic effect. POLYM. COMPOS., 35:301–309, 2014. © 2013 Society of Plastics Engineers  相似文献   

5.
A novel flame‐retardant poly (vinyl alcohol) (PVA) composite foam was prepared successfully through thermal processing, which was filled with high content of flame retardant, based on aluminum hydroxide (ATH) and aluminum phosphinate (AlPi) and using water as plasticizer and blowing agent. The flame‐retardant property and mechanism of the prepared foam matrix were studied by vertical burning test, limiting oxygen index (LOI), cone calorimeter, scanning electronic microscopy (SEM) and X‐ray photoelectron spectroscopy (XPS). The experimental results showed that the PVA/ATH/AlPi (1/1.2/0.05) composite achieved LOI value of 41% and UL94 V‐0 (3.2 mm) rate. The addition of ATH and AlPi into PVA matrix significantly decreased flammability of the composites, because a more compact and continuous char layer of the PVA/ATH/AlPi composite could be formed, due to the involvement of AlPi in the char‐forming reaction. Compared with the pure PVA sample, the peak heat release rate (PHRR) and total heat release (THR) of PVA/ATH/AlPi (1/1.2/0.05) composite were reduced by 76.5% and 58.2%, respectively. Built upon this PVA‐based foam matrix with good flame retardancy, the flame‐retardant PVA‐based foam was successfully prepared through thermal extrusion. In addition, the influence of water content on melt viscosity, foam structure and mechanical strength was also analyzed. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42020.  相似文献   

6.
A novel flame‐retardant synergist, chitosan/urea compound based phosphonic acid melamine salt (HUMCS), was synthesized and characterized by Fourier transform infrared spectroscopy and 31P‐NMR. Subsequently, HUMCS was added to a fire‐retardant polypropylene (PP) compound containing an intumescent flame‐retardant (IFR) system to improve its flame‐retardant properties. The PP/IFR/HUMCS composites were characterized by limiting oxygen index (LOI) tests, vertical burning tests (UL‐94 tests), microscale combustion calorimetry tests, and thermogravimetric analysis to study the combustion behavior and thermal stability. The addition of 3 wt % HUMCS increased the LOI from 31.4 to 33.0. The addition of HUMCS at a low additive amount reduced the peak heat‐release rate, total heat release, and heat‐release capacity obviously. Furthermore, scanning electron micrographs of char residues revealed that HUMCS could prevent the IFR–PP composites from forming a dense and compact multicell char, which could effectively protect the substrate material from combusting. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40845.  相似文献   

7.
Microencapsulated aluminum hypophosphite (MFAHP) with a shell of melamine–formaldehyde resin (MF) was prepared via in situ condensation polymerization. The presence of MFAHP increased the water resistance of flame‐retarded (FR) acrylonitrile–butadiene–styrene (ABS) composites after hot water treatment. The mechanical properties indicate that the tensile strength and flexural strength of the FR ABS/MFAHP composites is enhanced with the incorporation of MFAHP. Cone calorimeter test results demonstrated that the peak heat release rate, total heat release, and total smoke release values of the ABS/MFAHP composites were significantly decreased. Digital photos and scanning electron microscopy images of the residues of ABS/25 wt % MFAHP2 composites exhibited compact char layer structures, with many cobweb‐like nanoparticle arrangements formed on the surface by the burning process. The investigation of flame‐retardant mechanisms of ABS/MFAHP composites using infrared spectroscopy and energy‐dispersive X‐ray spectroscopy indicated that both the formation of char residue in the condensed phase and the release of inert gases by the MF shell in the gas phase led to the formation of compact and stable char layers containing carbon/pyrophosphate and aluminum polyphosphate, consequently leading to the good flame‐retardant performance of MFAHP. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45008.  相似文献   

8.
Synergistic flame‐retardant effect of halloysite nanotubes (HNTs) on an intumescent flame retardant (IFR) in low‐density polyethylene (LDPE) was investigated by limited oxygen index (LOI), vertical burning test (UL‐94), thermogravimetric analysis (TGA), cone calorimeter (CC) test, and scanning electronic microscopy (SEM). The results of LOI and UL‐94 tests indicated that the addition of HNTs could dramatically increase the LOI value of LDPE/IFR in the case that the mass ratio of HNTs to IFR was 2/28 at 30 wt % of total flame retardant. Moreover, in this case the prepared samples could pass the V‐0 rating in UL‐94 tests. CC tests results showed that, for LDPE/IFR, both the heat release rate and the total heat release significantly decreased because of the incorporation of 2 wt % of HNTs. SEM observations directly approved that HNTs could promote the formation of more continuous and compact intumescent char layer in LDPE/IFR. TGA results demonstrated that the residue of LDPE/IFR containing 2 wt % of HNTs was obviously more than that of LDPE/IFR at the same total flame retardant of 30 wt % at 700°C under an air atmosphere, and its maximum decomposing rate was also lower than that of LDPE/IFR, suggesting that HNTs facilitated the charring of LDPE/IFR and its thermal stability at high temperature in this case. Both TGA and SEM results interpreted the mechanism on the synergistic effect of HNTs on IFR in LDPE, which is that the migration of HNTs to the surface during the combustion process led to the formation of a more compact barrier, resulting in the promotion of flame retardancy of LDPE/IFR. In addition, the mechanical properties of LDPE/IFR/HNTs systems were studied, the results showed that the addition of 0.5–2 wt % of HNTs could increase the tensile strength and the elongation at break of LDPE/IFR simultaneously. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40065.  相似文献   

9.
The poly(hexamethylene terephthalamide)‐co‐polycaprolactam (PA6T/6; 50:50) copolymer was synthesized with a reactive extrusion method and subsequently mixed with a certain content of glass fibers (GFs) and different ratios of flame‐retardant aluminum diethyl phosphinate (AlPi) to fabricate a series of composites. These resulting composites were found to have excellent mechanical (tensile strength = 119–154 MPa) and thermal properties (heat‐deflection temperature = 263–293 °C). It is particularly worth mentioning that the value of the limiting oxygen index reached 29.5% and a UL‐94 V‐0 rating (1.6 mm) was achieved with the addition of 20 portions of AlPi. Also, the values of the peak heat‐release rate and total heat release in cone calorimetry were found to decrease with the addition of the flame‐retardant AlPi, which acted mainly as a flame inhibitor in the gas phase. Through visual observation, scanning electron microscopy after cone calorimetry testing, and thermogravimetric analysis, the condensed‐phase flame‐retardant mechanism of the PA6T/6–GF–AlPi system was confirmed to have a synergetic role. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46451.  相似文献   

10.
A surface functionalized graphene oxide (FGO) was prepared by a simple and efficient method of treating graphene oxide (GO) with pentaerythritol (PER) in water using an ultrasound process. After the PER was grafted onto the surface of the GO, the GO became hydrophobic instead of hydrophilic and precipitated as a dark brown material. The results of Fourier‐transform infrared analysis, X‐ray photoelectron spectroscopy, X‐ray diffraction, and transmission electron microscopy demonstrated that the PER had been successfully attached to the GO. Subsequently, the FGO was incorporated into the intumescent flame‐retardant‐polypropylene system. The presence of FGO improved the flame‐retardant efficiency as evidenced by the limiting oxygen index (LOI) and vertical burning test (UL‐94) test. Analysis by scanning electronic microscopy indicated that the FGO promoted the formation of a continuous, intact residual char layer on the surface of the polymer, which acts as an insulating barrier to protect the base material. As a result, it delayed the peak of heat release rate and increased the residual mass obtained on combustion of the polymer. J. VINYL ADDIT. TECHNOL., 21:278–284, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
In this article, a novel flame retardant (coded as BNP) was successfully synthesized through the addition reaction between triglycidyl isocyanurate, 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide and phenylboronic acid. BNP was blended with diglycidyl ether of bisphenol‐A to prepare flame‐retardant epoxy resin (EP). Thermal properties, flame retardancy, and combustion behavior of the cured EP were studied by thermogravimetric analysis, limited oxygen index (LOI) measurement, UL94 vertical burning test, and cone calorimeter test. The results indicated that the flame retardancy and smoke suppressing properties of EP/BNP thermosets were significantly enhanced. The LOI value of EP/BNP‐3 thermoset was increased to 32.5% and the sample achieved UL94 V‐0 rating. Compared with the neat EP sample, the peak of heat release rate, average of heat release rate, total heat release, and total smoke production of EP/BNP thermosets were decreased by 58.2%–66.9%, 27.1%–37.9%, 25.8%–41.8%, and 21.3%–41.7%, respectively. The char yields of EP/BNP thermosets were increased by 46.8%–88.4%. The BNP decomposed to produce free radicals with quenching effect and enhanced the charring ability of EP matrix. The multifunctional groups of BNP with flame retardant effects in both gaseous and condensed phases were responsible for the excellent flame retardancy of the EP/BNP thermosets. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45291.  相似文献   

12.
A combination of intumescent components was evaluated as a novel flame retardant system in a flexible polyurethane foam, and the incorporation of these components gave rise to a significant enhancement of the flame retardant properties of the foam. The heat release rate was lowered at an early stage as well as throughout the fire, the total heat production was decreased and the time to ignition was prolonged. Mechanical measurements of the foam revealed enhanced properties in terms of stiffness accompanied by a large decrease in elongation at break as compared with a reference foam. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

13.
Microcapsulated red phosphorus (MRP), with a melamine–formaldehyde resin coating layer, was prepared by two‐step coating processes. The physical and chemical properties of MRP were characterized by Fourier‐transform infrared spectroscopy (FTIR), X‐ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM) and other measurements. The flame retardant action and mechanism of MRP in the halogen‐free flame retardant (HFFR) polyolefins (PO) blends have been studied using cone calorimeter, limiting oxygen index (LOI), thermogravimetric analysis (TGA) and dynamic FTIR spectroscopy. The results show that the MRP, which is coated with melamine–formaldehyde resin, has a higher ignition point, a considerably lower amount of phosphine evolution and of water absorption compared with red phosphorus (RP) itself. The data observed by cone calorimeter, LOI and TGA measurements from the PO/HFFR blends demonstrated that the MRP can decrease the heat release rate and effective heat of combustion, and increase the thermostability and LOI values of PO materials. The dynamic FTIR results revealed the flame‐retardant mechanism that RP can promote the formation of charred layers with the P–O and P–C complexes in the condensed phase during burning of polymer materials. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
A flame retardant tri‐(phosphaphenanthrene‐(hydroxyl‐methylene)‐phenoxyl)‐1, 3, 5‐triazine (Trif‐DOPO) and its control samples are incorporated into diglycidyl ether of bisphenol‐A (DGEBA) and 4, 4′‐diamino‐diphenyl sulfone (DDS) to prepare flame retardant thermosets, respectively. According to the results of limited oxygen index (LOI), UL94 vertical burning test and cone calorimeter test, the Trif‐DOPO/DGEBA/DDS thermoset with 1.2 wt % phosphorus possesses the LOI value of 36% and UL94 V‐0 flammability rating, and Trif‐DOPO can decrease the peak of heat release rate (pk‐HRR) and reduce the total heat release (THR) of thermosets. All these prove better flame retardant performance of Trif‐DOPO than that of 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide(DOPO). The residue photos of thermosets after cone calorimetry test disclose that Trif‐DOPO can promote the formation of thick and tough melting char layer for combined action of the flame retardant groups of Trif‐DOPO. The results from thermo gravimetric analysis (TGA) and pyrolysis‐gas chromatography‐mass spectrometry(Py‐GC/MS) show that the groups in Trif‐DOPO can be decomposed and produce PO2 fragments, phosphaphenanthrene and phenoxy fragments, which can jointly quench the free radical chain reaction during combustion. Therefore, the excellent flame retardancy of Trif‐DOPO is attributed to its flame retardant group‐synergic‐effect. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39709.  相似文献   

15.
A series of flame‐retardant rigid polyurethane foams (RPUFs) containing nonreactive phosphonate (5‐ethyl‐2‐methyl‐1,3,2‐dioxaphosphorinan‐5‐yl) methyl dimethyl phosphonate P‐oxide (EMD) and expandable graphite (EG) were prepared by water blown. The flame‐retardant properties and mechanism of EMD/EG on RPUFs were systematically investigated. The EMD/EG system effectively increased the limiting oxygen index (LOI) value and decreased the values of total heat release (THR), av‐effective heat of combustion (EHC), pk‐heat release rate (HRR), total smoke release (TSR) of RPUFs. The impact values of LOI, THR, and av‐EHC resulted by EMD/EG system are nearly equal to the sum of the impact values by EMD and EG individually in RPUFs, which implies the addition flame‐retardant effect from EMD and EG. EMD alone exerted excellent gas‐phase flame‐retardant effect by releasing PO fragments with quenching effect. The firm residue produced by EMD combined well with the loose and worm‐like expanded graphite from EG further to form compact and expanded char layer, which brought excellent barrier effect and filtration effect to matrix. That's why pk‐HRR and TSR values of RPUF reduced. Depending on the simultaneous actions of EMD/EG system in gas phase and condensed phase during combustion, the flame‐retardant effects from nonreactive phosphonate and EG on RPUFs were added together. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45960.  相似文献   

16.
To obtain a more efficient flame‐retardant system, the extra‐triazine‐rich compound melamine cyanurate (MCA) was coworked with tri(3‐9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide‐2‐hydroxypropan‐1‐yl)?1,3,5‐triazine‐2,4,6‐trione (TGIC–DOPO) in epoxy thermosets; these were composed of diglycidyl ether of bisphenol A (DGEBA) epoxy resin and 4,4′‐diaminodiphenyl methane (DDM). The flame‐retardant properties were investigated by limited oxygen index measurement, vertical burning testing, and cone calorimeter testing. In contrast to the DGEBA/DDM (EP for short) thermoset with a single TGIC–DOPO, a better flame retardancy was obtained with TGIC–DOPO/MCA/EP. The 3% TGIC–DOPO/2% MCA/EP thermoset showed a lower peak heat‐release rate value, a lower effective heat of combustion value, fewer total smoke products, and lower total yields of carbon monoxide and carbon dioxide in comparison with 3% TGIC–DOPO/EP. The results reveal that MCA and TGIC–DOPO worked jointly in flame‐retardant thermosets. The dilution effect of MCA, the quenching effect of TGIC–DOPO, and their joint action inhibited the combustion intensity and imposed a better flame‐retardant effect in the gas phase. The 3% TGIC–DOPO/2% MCA/EP thermoset also exhibited an increased residue yield, and more compositions with triazine rings were locked in the residues; this implied that MCA/TGIC–DOPO worked jointly in the condensed phase and promoted thermoset charring. The results reveal the better flame‐retardant effect of the MCA/TGIC–DOPO system in the condensed phase. Therefore, the joint incorporation of MCA and TGIC–DOPO into the EP thermosets increased the flame‐retardant effects in both the condensed and gas phases during combustion. This implied that the adjustment to the group ratio in the flame‐retardant group system endowed the EP thermoset with better flame retardancy. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43241.  相似文献   

17.
The effects of resin molecular weight on the flame‐retardant mechanism of silica were studied with two different molecular weights of poly(methyl methacrylate) (PMMA), 122,000 and 996,000 g/mol, and two silicas, fused silica with a small surface area and silica gel with a large surface area. A total of six different samples were studied, with a mass fraction of 10% silica. The mass loss rate of the six samples in nitrogen and the heat release rate from burning in air were measured at an external radiant flux of 40 kW/m2. The addition of silica gel to the low‐molecular‐weight PMMA significantly reduced the mass loss rate and heat release rate; addition to the high‐molecular‐weight PMMA provided the largest reductions of these quantities in this study. For fused silica, some reduction in mass loss rate and heat release rate was observed when it was added to the high‐molecular‐weight PMMA; addition to the low‐molecular‐weight PMMA did not reduce either loss rate. Chemical analysis of the collected residues and observation of the sample surface during gasification reveal the accumulation of silica near the surface; the larger its coverage over the sample surface was, less the mass loss rate and heat release rate were. Both the level of accumulation and its surface coverage depended strongly not only on the silica characteristics but also on the melt viscosity of the PMMA. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1541–1553, 2003  相似文献   

18.
A phosphorus/silicon flame retardant, MVC‐DOPO, was synthesized from 9,10‐dihydro‐9‐oxa‐10‐phosphaphenanthrene‐10‐oxide (DOPO) and 2,4,6,8‐tetra‐methyl‐2,4,6,8‐tetra‐vinyl‐cyclo‐tetrasiloxane (MVC) via addition reaction. Its flame‐retardant effect on polycarbonate (PC) was investigated. The phosphorus/silicon flame retardant increased the limited oxygen index and UL‐94 rating and reduced the heat release rate and total heat release of DOPO‐MVC/PC composites during combustion, indicating the excellent flame‐retardant effect of MVC‐DOPO on PC. MVC‐DOPO inhibited the burning intensity of PC material in the gaseous phase and promoted the formation of a more viscous residue in the condensed phase. Through releasing phosphorus‐containing pieces and phenoxy radicals from the phosphaphenanthrene group, MVC‐DOPO quenched the combustion chain reaction in the gaseous phase; through promoting formation of a more viscous residue and a dense char layer from the main actions of the cyclotetrasiloxane group, MVC‐DOPO reduced fuel release and generated a barrier effect in the condensed phase. Hence, MVC‐DOPO effectively exerted a flame‐retardant effect on PC material in both the gaseous and condensed phases during combustion. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45815.  相似文献   

19.
Wheat straw (WS) has numerous advantages compared with traditional bioadditives such as starch and lignin. So in this work, based on WS and silica microencapsulated ammonium polyphosphate, flame retardant polypropylene/wheat straw (WSP) composites were prepared by melted blend method. Flame retardant and thermal properties of WSP composites have been investigated. The results of cone calorimeter show that peaks of heat release rate and total heat release of the flame retardant WSP composite decrease substantially compared with those of pure polypropylene. The peak of heat release rate value of the flame retardant WSP composite decreases from 1290.5 to 247.9 kW/m2, and the total heat release value decreases from 119.4 to 46.3 MJ/m2. Meanwhile, thermal degradation and gas products of the flame retardant WSP composite were monitored by thermogravimetric analysis and thermogravimetric analysis‐infrared spectrometry. The result of thermal analysis shows that the flame retardant WSP composite has a high thermal stability and has a 30.0 wt% residual char at 600°C. From this work, we hope to provide a method to prepare flame retardant polymer composites with a biodegradable natural material‐WS.  相似文献   

20.
Wei Xu  Guojian Wang 《火与材料》2016,40(6):826-835
Phosphorus‐containing compounds have been widely used as flame retardants for polyurethane rigid foam (PURF). In this work, a number of phosphorus compounds were utilized and studied as flame retardants for PURF, including ammonium polyphosphate, pentaerythritol phosphate, triethyl phosphate, and dimethyl methyl phosphonate. The thermal behavior of flame retardants was thoroughly investigated, such as degradation, vaporization, and the properties of degraded products. The influence of thermal behavior of phosphorus flame retardants on PURF was examined and analyzed. The results indicated that the effect of flame retardant was highly related to their thermal behavior. Phosphorus compounds for gas phase flame retardants were very effective in decreasing the heat release rate and increase limited oxygen index of PURF, while condensed phase flame retardants showed better comprehensive flame retardant effect, such as reducing the toxicity of combustion product. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号