首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Temperature, pH, and reduction triple‐stimuli‐responsive inner‐layer crosslinked micelles as nanocarriers for drug delivery and release are designed. The well‐defined tetrablock copolymer poly(polyethylene glycol methacrylate)–poly[2‐(dimethylamino) ethyl methacrylate]–poly(N‐isopropylacrylamide)–poly(methylacrylic acid) (PPEGMA‐PDMAEMA‐PNIPAM‐PMAA) is synthesized via atom transfer radical polymerization, click chemistry, and esterolysis reaction. The tetrablock copolymer self‐assembles into noncrosslinked micelles in acidic aqueous solution. The core‐crosslinked micelles, shell‐crosslinked micelles, and shell–core dilayer‐crosslinked micelles are prepared via quaternization reaction or carbodiimide chemistry reaction. The crosslinked micelles are used as drug carriers to load doxorubicin (DOX), and the drug encapsulation efficiency with 20% feed ratio reached 59.2%, 73.1%, and 86.1%, respectively. The cumulative release rate of DOX is accelerated by single or combined stimulations. The MTT (3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide) assay verifies that the inner‐layer crosslinked micelles show excellent cytocompatibility, and DOX‐loaded micelles exhibit significantly higher inhibition for HepG2 cell proliferation. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46714.  相似文献   

2.
The experiment and dissipative particle dynamics simulation were carried out on four polymers with different block ratios for the investigation of the structure–property relationship of (poly(ε‐caprolactone)2‐[poly(2‐(diethylamino)ethyl methacrylate)‐b‐poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA‐b‐PPEGMA)2] micelles. The miktoarm star polymers assembled into spherical micelles composed of PCL core, pH‐sensitive PDEA mesosphere and poly (ethylene glycol) methyl ether methacrylate (PPEGMA) shell. When decreasing pH from 7.4 to 5.0, the hydrodynamic diameter and transmittance of (PCL)2(PDEA‐b‐PPEGMA)2 micelles increased along with globule‐uneven‐extended conformational transitions, owing to the protonation of tertiary amine groups of DEA at lower pH conditions. Doxorubicin (DOX) was mainly loaded in the pH‐sensitive layer, and more DOX were loaded in the core when increasing drug concentrations. The in vitro DOX release from the micelles was significantly accelerated by decreasing pH from 7.4 to 5.0. The results demonstrated that the pH‐sensitive micelles could be used as an efficient carrier for hydrophobic anticancer drugs, achieving controlled and sustained drug release. © 2014 American Institute of Chemical Engineers AIChE J, 60: 3634–3646, 2014  相似文献   

3.
Polymeric micelles that are responsive to pH are particularly attractive for application in drug delivery systems. In this study, one type of amphiphilic block copolymers with hydrophobic building blocks bearing pH‐sensitive ketal groups was designed. In an acidic environment, the polarity transfer from amphiphile to double hydrophile for this copolymer destroyed the driving force of micelle formation, which triggered the release of encapsulated hydrophobic molecules. The amphiphilic block copolymers monomethoxy‐poly(ethylene glycol)‐block‐poly(2,2‐dimethyl‐1,3‐dioxolane‐4‐yl)methyl acrylate (MPEG‐block‐PDMDMA) was fabricated by atom transfer radical polymerization using MPEG‐Br as macroinitiator. The critical micelle concentration of various compositions of this copolymer in aqueous solution ranged from 4.0 to 10.0 mg L?1, and the partition equilibrium constant (Kv) of pyrene in micellar solutions of the copolymers varied from 1.61 × 105 to 4.86 × 105. Their overall effective hydrodynamic diameters from dynamic light scattering measurements were between 80 and 400 nm, and the micellar morphology showed spherical geometry as investigated using transmission electron microscopy. At pH = 1.0, all of these polymeric micelles presented 100% payload release in 24 h of incubation, while at pH = 3.0, nearly 70 and 25% of pyrene was released for MPEG‐block‐PDMDMA (44/18) and MPEG‐block‐PDMDMA (44/25) in 260 h, respectively. The pH‐responsive MPEG‐block‐PDMDMA polymeric micelles having good encapsulation efficiency for hydrophobic drugs are potential candidates for biomedical and drug delivery applications. Copyright © 2010 Society of Chemical Industry  相似文献   

4.
A series of poly(?‐caprolactone)–poly(ethylene glycol) (PCL‐PEG) and poly(?‐caprolactone/glycolide)–poly(ethylene glycol) [P(CL/GA)‐PEG] diblock copolymers were prepared by ring‐opening polymerization of ?‐caprolactone or a mixture of ?‐caprolactone and glycolide using monomethoxy PEG (mPEG) as macroinitiator and Sn(Oct)2 as catalyst. The resulting copolymers were characterized using 1H‐NMR, gel permeation chromatography, differential scanning calorimetry, and wide‐angle X‐ray diffraction. Copolymer micelles were prepared using the nanoprecipitation method. The morphology of the micelles was spherical or worm‐like as revealed by transmission electron microscopy, depending on the copolymer composition and the length of the hydrophobic block. Introduction of the glycolide component, even in small amounts (CL/GA = 10), disrupted the chain structure and led to the formation of spherical micelles. Interestingly, the micelle size decreased with the encapsulation of paclitaxel. Micelles prepared from mPEG5000‐derived copolymers exhibited better drug loading properties and slower drug release than those from mPEG2000‐derived copolymers. Drug release was faster for copolymers with shorter PCL blocks than for those with longer PCL chains. The introduction of glycolide moieties enhanced drug release, but the overall release rate did not exceed 10% in 30 days. In contrast, drug release was enhanced in acidic media. Therefore, these bioresorbable micelles and especially P(CL/GA)‐PEG micelles with excellent stability, high drug loading content, and prolonged drug release could be promising for applications as drug carriers. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45732.  相似文献   

5.
This paper investigates the pH‐dependent micellization of (hydroxyethyl cellulose)‐graft‐poly(acrylic acid) (HEC‐graft‐PAA), the crosslinking of the pH‐induced nanoparticles and the drug loading of the crosslinked multi‐morphological nanoparticles. The hydrodynamic diameter (〈Dh〉) of the pH‐induced micelles was found dependent on both temperature and concentration in dynamic light scattering studies. After the crosslinking of PAA segments in the micelles, shape‐persistent nanoparticles were obtained, which exhibited multiple morphologies from nano‐cage to hollow sphere, and a homogeneous swollen microgel in neutral medium with an increase of the degree of crosslinking. To investigate the drug loading of these shape‐persistant nanoparticles, diminazene aceturate was chosen as a model drug. The loading efficiency and the drug release behavior against water and 0.1 mol L?1 NaCl were studied using UV absorption spectroscopy. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
Amphiphilic thermally sensitive poly(N‐isopropylacrylamide)‐block‐poly(tetramethylene carbonate) block copolymers were synthesized by ring‐opening polymerization of tetramethylene carbonate with hydroxyl‐terminated poly(N‐isopropylacrylamide) (PNiPAAm) as macro‐initiator in the presence of stannous octoate as catalyst. The synthesis involved PNiPAAm bearing a single terminal hydroxyl group prepared by telomerization using 2‐hydroxyethanethiol as a chain‐transfer agent. The copolymers were characterized using 1H NMR and Fourier transform infrared spectroscopy and gel permeation chromatography. Their solutions show reversible changes in optical properties: transparent below the lower critical solution temperature (LCST) and opaque above the LCST. The LCST depends on the polymer composition and the media. Owing to their amphiphilic characteristics, the block copolymers form micelles in the aqueous phase with critical micelle concentrations (CMCs) in the range 1.11–22.9 mg L?1. Increasing the hydrophobic segment length or decreasing the hydrophilic segment length in the amphiphilic diblock copolymers produces lower CMCs. A core‐shell structure of the micelles is evident from 1H NMR analyses of the micelles in D2O. Transmission electron microscopic analyses of micelle morphology show a spherical structure of both blank and drug‐loaded micelles. The blank and drug‐loaded micelles have an average size of less than 130 nm. Observations show high drug‐entrapment efficiency and drug‐loading content for the drug‐loaded micelles. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
A novel A2BA2‐type thermosensitive four‐armed star block copolymer, poly(N‐isopropyl acrylamide)2b‐poly(lactic acid)‐b‐poly(N‐isopropyl acrylamide)2, was synthesized by atom transfer radical polymerization and characterized by 1H‐NMR, Fourier transform infrared spectroscopy, and size exclusion chromatography. The copolymers can self‐assemble into nanoscale spherical core–shell micelles. Dynamic light scattering, surface tension, and ultraviolet–visible determination revealed that the micelles had hydrodynamic diameters (Dh) below 200 nm, critical micelle concentrations from 50 to 55 mg/L, ζ potentials from ?7 to ?19 mV, and cloud points (CPs) of 34–36°C, depending on the [Monomer]/[Macroinitiator] ratios. The CPs and ζ potential absolute values were slightly decreased in simulated physiological media, whereas Dh increased somewhat. The hydrophobic camptothecin (CPT) was entrapped in polymer micelles to investigate the thermo‐induced drug release. The stability of the CPT‐loaded micelles was evaluated by changes in the CPT contents loaded in the micelles and micellar sizes. The MTT cell viability was used to validate the biocompatibility of the developed copolymer micelle aggregates. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 4137–4146, 2013  相似文献   

8.
BACKGROUND: Chemical or physical crosslinking of supramolecular assemblies gives them stability in a wide range of environments. Much attention is paid to multilayer (onion‐like) polymeric micelles because their functionality is higher than classic core‐shell micelles. This work reports on the formation and crosslinking of onion‐like micelles prepared by mixing two different block copolymers containing a crosslinkable poly(dimethylaminoethyl methacrylate) (PDMAEMA) block. RESULTS: Block copolymers of a crosslinkable PDMAEMA block were synthesized by atom transfer radical polymerization of 2‐(dimethylamino)ethyl methacrylate (DMAEMA) from poly(propylene oxide) (PPO) or poly(ethylene oxide) (PEO) macroinitiators. The (PDMAEMA13)‐block‐PPO69block‐(PDMAEMA13) triblock formed wormlike core‐shell micelles, which were converted into ellipsoidal onion‐like micelles on mixing with the PEO45block‐P(DMAEMA8co‐MMA4) diblock. Onion‐like micelles were crosslinked by quaternization of DMAEMA units. CONCLUSION: Formation of onion‐like micelles by mixing two different AB (ABA) and B′C block copolymers and their subsequent crosslinking is a valuable approach towards stabilized supramolecular assemblies of a higher complexity and functionality than the individual constitutive components. Copyright © 2008 Society of Chemical Industry  相似文献   

9.
Novel amphiphilic star‐shaped terpolymers comprised of hydrophobic poly(?‐caprolactone), pH‐sensitive polyaminoester block and hydrophilic poly(ethylene glycol) (Mn = 1100, 2000 g mol?1) were synthesized using symmetric pentaerythritol as the core initiator for ring‐opening polymerization (ROP) reaction of ?‐caprolactone functionalized with amino ester dendrimer structure at all chain ends. Subsequently, a second ROP reaction was performed by means of four‐arm star‐shaped poly(?‐caprolactone) macromer with eight ‐OH end groups as the macro‐initiator followed by the attachment of a poly(ethylene glycol) block at the end of each chain via a macromolecular coupling reaction. The molecular structures were verified using Fourier transform infrared and 1H NMR spectroscopies and gel permeation chromatography. The terpolymers easily formed core–shell structural nanoparticles as micelles in aqueous solution which enhanced drug solubility. The hydrodynamic diameter of these agglomerates was found to be 91–104 nm, as measured using dynamic light scattering. The hydrophobic anticancer drug curcumin was loaded effectively into the polymeric micelles. The drug‐loaded nanoparticles were characterized for drug loading content, encapsulation efficiency, drug–polymer interaction and in vitro drug release profiles. Drug release studies showed an initial burst followed by a sustained release of the entrapped drug over a period of 7days at pH = 7.4 and 5.5. The release behaviours from the obtained drug‐loaded nanoparticles indicated that the rate of drug release could be effectively controlled by pH value. Altogether, these results demonstrate that the designed nanoparticles have great potential as hydrophobic drug delivery carriers for cancer therapy. © 2015 Society of Chemical Industry  相似文献   

10.
Self‐assembly of thermo‐sensitive poly (t‐butyl acrylate)‐b‐poly(N‐isopropylacrylamide) (PtBA‐ b‐PNIPAM) micelles in aqueous medium and its applications in controlled release of hydrophobic drugs were described. PtBA‐b‐PNIPAM was synthesized by atom transfer radical polymerization and aggregated into thermo‐sensitive core‐shell micelles with regular spheres in water, which was confirmed by 1H‐NMR, fluorescence spectroscopy, transmission electron microscopic (TEM), and UV–vis spectroscopic techniques. The critical micelle concentration of micelles decreased with the increase of the hydrophobic components. The anti‐inflammation drug naproxen (NAP) was loaded as the model drug into polymeric micelles, which showed a dramatic thermo‐sensitive fast/slow switching behavior around the lower critical solution temperature (LCST). When the temperature was enhanced above LCST, release of NAP from core‐shell micelles was accelerated ascribed to the temperature‐induced deformation of micelles. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

11.
A novel thermo‐ and pH‐responsive thiol‐end‐capped ABC triblock copolymer, namely poly(acrylic acid)‐block ‐poly(N ‐isopropylacrylamide)‐block ‐poly(? ‐caprolactone)–SH (PAA‐b ‐PNIPAAm‐b ‐PCL‐SH), was synthesized using a combination of ring‐opening polymerization and reversible addition–fragmentation chain transfer polymerization techniques. The chemical structures of all samples were characterized by means of Fourier transform infrared and 1H NMR spectroscopies. The molecular weight of each segment was investigated using both 1H NMR spectroscopy and gel permeation chromatography. The self‐assembly behavior of the PAA‐b ‐PNIPAAm‐b ‐PCL‐SH triblock copolymer under thermal and pH stimuli was fully investigated by means of fluorescence and UV–visible spectroscopies as well as dynamic light scattering measurements. The critical micelle concentration for the synthesized triblock copolymer was determined to be 0.0178 g L?1 using the fluorescence probe technique. The average size of PAA‐b ‐PNIPAAm‐b ‐PCL‐SH micelles was determined to be 25 nm using transmission electron microscopy observations, and its lower critical solution temperature was determined to be 41–43 °C using UV–visible spectroscopy. © 2017 Society of Chemical Industry  相似文献   

12.
A dual‐responsive double‐walled polymeric hollow sphere (PHS) serving as a candidate for synergetic drug delivery platform is prepared by a simple and green template polymerization in aqueous medium. The PHS, comprised of thermo‐responsive crosslinked poly(N‐isopropylacrylamide) (PNIPAM) as the inner shell and pH‐responsive crosslinked poly(methacrylic acid) (PMAAc) as the outer shell, is assembled through self‐removal of the thermo‐responsive template from a core‐triple shell structure by free radical polymerization with sequential addition of reactants. The discrete double‐shell structure renders the PHS independent temperature and pH‐controlled swelling/shrinking capability. Taking the advantage of two compartmentalized internal spaces (the core and the interlayer spaces) with independent temperature‐ and pH‐dependent behaviors, two model drugs representing the small molecule and the macromolecule are loaded in selective locations of the PHS. Two drugs show dramatically different release profiles according to environmental temperature and pH, due to the localization of drugs and the stimuli‐dependent property of its protective shells. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44335.  相似文献   

13.
Dually responsive amphiphilic diblock copolymers consisting of hydrophilic poly(N‐isopropyl acrylamide) [poly(NIPAAm)] and hydrophobic poly(9‐anthracene methyl methacrylate) were synthesized by reversible addition fragmentation chain‐transfer (RAFT) polymerization with 3‐(benzyl sulfanyl thiocarbonyl sulfanyl) propionic acid as a chain‐transfer agent. In the first step, the poly(NIPAAm) chain was grown to make a macro‐RAFT agent, and in the second step, the chain was extended by hydrophobic 9‐anthryl methyl methacrylate to yield amphiphilic poly(N‐isopropyl acrylamide‐b‐9‐anthracene methyl methacrylate) block copolymers. The formation of copolymers with three different hydrophobic block lengths and a fixed hydrophilic block was confirmed from their molecular weights. The self‐assembly of these copolymers was studied through the determination of the lower critical solution temperature and critical micelle concentration of the copolymers in aqueous solution. The self‐assembled block copolymers displayed vesicular morphology in the case of the small hydrophobic chain, but the morphology gradually turned into a micellar type when the hydrophobic chain length was increased. The variations in the length and chemical composition of the blocks allowed the tuning of the block copolymer responsiveness toward both the pH and temperature. The resulting self‐assembled structures underwent thermally induced and pH‐induced morphological transitions from vesicles to micelles and vice versa in aqueous solution. These dually responsive amphiphilic diblock copolymers have potential applications in the encapsulation of both hydrophobic and hydrophilic drug molecules, as evidenced from the dye encapsulation studies. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46474.  相似文献   

14.
Interest in functional soft matter with stimuli‐responsive wettability has increasingly intensified in recent years. From the chemical product engineering viewpoint, this study aims to fabricate reversible pH‐responsive polymeric surfaces with controllable wettability using [poly(2,2,3,4,4,4‐hexafluorobutyl methacrylate)‐block‐ poly(acrylic acid) (PHFBMA‐b‐PAA)] block copolymers. To attain this aim, three block copolymers with different PAA segment lengths were synthesized for the first time through Cu(0)‐mediated reversible‐deactivation radical polymerization and hydrolysis reaction. pH‐induced controllable wettability was achieved by spin‐coating the resulting block copolymers onto silicon wafers. Results showed that the pH‐responsive wetting behavior was introduced by incorporating the PAA block, and that the responsiveness of as‐fabricated surfaces was greatly influenced by PAA content. All three evolutions of water contact angle with pH shared a similar inflection point at pH 5.25. Furthermore, on the basis of the wetting properties and mechanism understanding, the application of copolymer coated meshes in layered water/oil separation was exploited. Given their superhydrophilicity and underwater superoleophobicity, PHFBMA70‐b‐PAA148 and PHFBMA70‐b‐PAA211 coated stainless steel meshes (SSMs) can efficiently separate water from different mixtures of organic solvent and water with high flux. However, considering long‐term use, the PHFBMA70‐b‐PAA148 coated SSM with good stability may be the best copolymer for water/oil separation. Therefore, a coordination of structure, composition, and functionality was necessary to enable practical applications of the functional materials. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1758–1771, 2016  相似文献   

15.
Thermoresponsive amphiphilic copolymer, poly[N‐isopropyl acrylamide‐co‐3‐(trimethoxysilyl)propylmethacrylate]‐b‐poly{N‐[3‐(dimethylamino)propyl]methacrylamide} with a branched structure was designed and synthesized by consecutive reversible addition–fragmentation chain‐transfer polymerization. The further hydrolysis of trimethoxysilyl functions in 3‐(trimethoxysilyl) propyl methacrylate units led to the fabrication of core‐crosslinked (CCL) micelles with silica crosslinks at temperatures above the lower critical solution temperature of the poly(N‐isopropyl acrylamide) block. The thermally induced structural and morphological changes of the CCL micelles in aqueous solution were investigated by transmission electron microscopy and 1H‐NMR analyses. The resulting CCL micelles were further explored as nanocarriers for the codelivery of an anticancer drug and nucleic acid for enhanced therapeutic efficacy. The CCL micelles effectively condensed the nucleic acid and mediated higher gene transfer in the presence of serum than in serum‐free transduction. A cytotoxicity study revealed that whereas the pure CCL micelles exhibited unapparent cytotoxicity, the codelivery of p53 and doxorubicin with the CCL micelle formulation resulted in better treatment efficiency than sole chemotherapy. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41752.  相似文献   

16.
The aim of the research presented was to develop a potential liver‐targeting prolonged‐circulation polymeric prodrug of doxorubicin (Dox) with a pH‐triggered drug release profile. In particular, linear dendritic block copolymers composed of polyamidoamine dendrimer (PAMAM) and poly(ethylene glycol) (PEG; number‐average molecular weight of 2000 g mol?1) with or without galactose (Gal) were synthesized. Dox was coupled to the copolymers via an acid‐labile hydrazone linker. These prodrugs, designated Gal‐PEG‐b‐PAMAM‐Doxn and mPEG‐b‐PAMAM‐Doxm, showed accelerated Dox release as the pH decreased from 8.0 to 5.6. Cytotoxicity of the prodrugs was lower than that of free Dox due to the gradual drug release nature. Compared to mPEG‐b‐PAMAM‐Doxm, Gal‐PEG‐b‐PAMAM‐Doxn showed rather high cytotoxicity against Bel‐7402, suggestive of its galactose receptor‐mediated enhanced tumor uptake. This galactose receptor‐mediated liver‐targeted profile was further confirmed by the prolonged retention time in hepatoma tissue monitored using magnetic resonance imaging. Gal‐PEG‐b‐PAMAM‐Doxn showed better in vivo antitumor efficacy than free Dox, suggesting its great potential as a polymeric antitumor prodrug. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
A new kind of block copolymer micelles methoxy polyethylene glycol (mPEG) grafted α‐zein protein (mPEG‐g‐α‐zein) was synthesized. The chemical composition of mPEG‐g‐α‐zein was identified with the help of FT‐IR and 1H‐NMR. The biohybrid polymer can self‐assemble into spherical core–shell nanoparticles in aqueous solution. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to investigate the self‐assembled morphology of mPEG‐g‐α‐zein. Dynamic light scattering (DLS) results showed that the particle size of mPEG‐g‐α‐zein was about 90 nm. Moreover, the nanoparticles had a very low critical micelle concentration value with only 0.02 mg/mL. Then, the anticancer drug curcumin (CUR) was encapsulated into the biohybrid polymer micelles. The in vitro drug release profile showed a zero‐order release of CUR up to 12 h at 37°C. Cell viability studies revealed that the mPEG‐g‐α‐zein polymer exhibited low cytotoxicity for HepG2 cells (human hepatoma cells). Consequently, the mPEG‐g‐α‐zein micelles can be used as a potential nano‐carrier to encapsulate hydrophobic drugs and nutrients. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42555.  相似文献   

18.
The aim of this study is to develop azido‐carrying biodegradable polymers and their postfunctionalization with alkynyl compounds via click chemistry and to investigate their potential use in drug delivery. Azido polymers were prepared by ring‐opening polymerization of cyclic carbonate monomer, 2,2‐bis(azidomethyl)trimethylene carbonate (ATC) with lactide using stannous octoate as catalyst. Several alkynyl compounds were selected to investigate the feasibility and reaction condition of click chemistry. With microwave‐assisting, the reaction time of click chemistry was shortened to 5 min. By using poly(ethylene glycol) (PEG) as macroinitiator, amphiphilic block copolymer mPEG‐b‐P(LA‐co‐ATC) was obtained and it could self‐assemble into micelles by solvent replacement method. The pendant groups were used for conjugating anticancer drugs gemcitabine and paclitaxel and fluorescent dye Rhodamine B. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide was used to assay the cytotoxicity of the conjugate micelles against SKOV‐3 and HeLa cell lines. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Reduction‐responsive drug delivery systems have recently gained intense attention in intracellular delivery of anticancer drugs. In this study, we developed a PEGylated polypeptide, poly(ethylene glycol)‐block‐poly(?‐propargyloxycarbonyl‐l ‐lysine) (PEG113b‐PPAL), as a novel clickable substrate for conjugation of reduction‐responsive side chains for antineoplastic drug delivery. PEG113b‐PPAL was synthesized through ring‐opening polymerization of alkyne‐containing N‐carboxyanhydride monomers. A designed disulfide‐containing side chain was introduced onto the PEGylated polypeptide by click reaction. The obtained copolymer PEG113b‐P(Lys‐DSA) formed micelles by self‐assembly, which exhibited reduction‐responsive behavior under the stimulus of 10 mmol L–1 glutathione (GSH) in water. A small molecule intermediate, compound 2 , was used as a model to investigate the thiol reduction mechanism of PEG113b‐P(Lys‐DSA) copolymers. The anticancer drug doxorubicin (DOX) was then loaded into the micelles with a drug loading content of 6.73 wt% and a loading efficiency of 40.3%. Both the blank and the drug‐loaded micelles (DOX‐loaded polylysine derived polymeric micelles (LMs/DOX)) adopted a spherical morphology, with average diameters of 48.0 ± 13.1 and 63.8 ± 20.0 nm, respectively. The in vitro drug release results indicated that DOX could be released faster from the micelles by the trigger of GSH in phosphate buffered saline. Confocal laser scanning microscopy and flow cytometer analysis further proved the intracellular delivery of DOX by LMs/DOX and their GSH‐sensitive release behavior. A 3‐(4,5‐dimethyl‐thiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide assay showed that the polymers exhibited negligible cytotoxicity towards normal L929 cells or cancer MCF‐7 cells with a treated concentration up to 1.0 mg mL–1. In conclusion, our synthesized biocompatible and biodegradable PEGylated polypeptides hold great promise for intracellular antineoplastic drug delivery. © 2019 Society of Chemical Industry  相似文献   

20.
Multi‐responsive hydrogels have recently received considerable attention for bioapplications. Here, novel temperature‐ and redox‐responsive polypetide hydrogels have been developed. Thermo‐sensitive hydrogels based on poly(ethyleneglycol)‐block ‐poly(γ‐propargyl‐l ‐glutamate) (PEG‐PPLG ) were first synthesized by the ring opening polymerization of γ‐propargyl‐l ‐glutamate N ‐carboxyanhydride (PLG‐NCA ) with amino group terminated PEG monomethyl ether (mPEG‐NH2 ) as macroinitiator and were then functionalized via the ‘thiol‐yne’ click reaction between the propargyl pendents and the thiol‐containing 1‐propanethiol. The sol ? gel phase transition of the obtained copolymer aqueous solution in response to temperature change was studied. The mass loss of the hydrogel in vitro was accelerated in the presence of H2O2 , exhibiting a redox‐responsive property. Further, the methyl thiazolyl tetrazolium viability results revealed that this polypetide hydrogel has excellent biocompatibility, presenting potential applications in the biomedical field. © 2016 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号