共查询到20条相似文献,搜索用时 15 毫秒
1.
Influence of processing condition and carbon nanotube on mechanical properties of injection molded multi‐walled carbon nanotube/poly(methyl methacrylate) nanocomposites 下载免费PDF全文
In this work, multi‐walled carbon nanotubes (MWCNT) and poly(methyl methacrylate) (PMMA) pellets were compounded via corotating twin‐screw extruder. The produced MWCNT/PMMA nanocomposite pellets were injection molded. The effect of MWCNT concentration, injection melt temperature and holding pressure on mechanical properties of the nanocomposites were investigated. To examine the mechanical properties of the MWCNT/PMMA nanocomposites, tensile test, charpy impact test, and Rockwell hardness are considered as the outputs. Design of experiments (DoE) is done by full factorial method. The morphology of the nanocomposites was performed using scanning electron microscopy (SEM). The results revealed when MWCNT concentration are increased from 0 to 1.5 wt %, tensile strength and elongation at break were reduced about 30 and 40%, respectively, but a slight increase in hardness was observed. In addition, highest impact strength belongs to the nanocomposite with 1 wt % MWCNT. This study also shows that processing condition significantly influence on mechanical behavior of the injection molded nanocomposite. In maximum holding pressure (100 bar), the nanocomposites show highest tensile strength, elongation, impact strength and hardness. According to findings, melt temperature has a trifle effect on elongation, but it has a remarkable influence on tensile strength. In the case of impact strength, higher melt temperature is favorable. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43738. 相似文献
2.
Preparation and properties of styrene‐butadiene rubber nanocomposites blended with carbon black‐graphene hybrid filler 下载免费PDF全文
Graphene has become an attractive reinforcing filler for rubber materials, but its dispersion in rubber is still a big challenge. In this work, a novel carbon black‐reduced graphene (CB‐RG) hybrid filler was fabricated and blended with styrene‐butadiene rubber (SBR) via simple two‐roll mill mixing. The prepared CB‐RG hybrids had a microstructure with small CB agglomerates adsorbed onto graphene surfaces. CB acted as a barrier preventing the RG sheets from restacking even after drying. Homogeneous dispersion of graphene sheets in SBR matrix was observed by the mechanical mixing method based on the application of the CB‐RG hybrid fillers. Dynamic mechanical analysis showed that Tg of the SBR/CB‐RG blend was higher than that of the SBR/CB blend indicating strong interfacial interactions between RG and SBR due to the high surface area of graphene and the π‐π interaction between SBR and graphene. The tensile properties of SBR/CB‐RG composites improved significantly and the volume resistivity decreased compared with the SBR/CB blends. The thermal stability of SBR composites filled with CB and CB‐RG showed slight difference. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41309. 相似文献
3.
Piezoresistive behavior of graphene nanoplatelets/carbon black/silicone rubber nanocomposite 下载免费PDF全文
Silicon rubber (SR) filled with carbon black (CB) and carbon black (CB)/graphene nanoplatelets (GNPs) hybrid fillers are synthesized via a liquid mixing method. The effects of filler type on the electrical properties and piezoresistive properties (near the region of the percolation) of the conductive SR composites are studied. It is suggested that the conductivity of the composite filled with CB/GNPs hybrid fillers in the mass ratio of 2 : 4 is much higher than that in other ratio. Percolation threshold for CB/GNPs/SR is found to be 0.18 volume fractions lower than CB/SR. Moreover, force rang and linearity of GNPs/CB/SR is higher than CB alone filling system. And the repeatability of the GNPs/CB/SR composites is better than CB/SR. Not repetitive index () of them is 0.1 and 0.18, respectively. The results suggest that the GNPs/CB/SR composites provide a new route toward fabrication of flexible piezoresistive sensors with high performance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39778. 相似文献
4.
Fine powders of montmorillonite (MMT)/multiwalled carbon nanotube (MWCNT) hybrids have been prepared by simple grinding of MWCNT with MMT in different weight ratios of MMT to MWCNT (10 : 1, 6 : 1, 3 : 1, 1 : 1, and 1 : 3) and characterized by wide‐angle X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. These studies have established the formation of the exfoliated structures of MMT/MWCNT (1 : 1) hybrid, in which MWCNTs exist in the state of single nanotubes that are adsorbed and intercalated on the surface and in between the MMT nanoplatelets. The hybrid has subsequently been used as reinforcing nanofiller in the development of high‐performance silicone rubber (SR) nanocomposites, and a remarkably synergistic effect of MMT and MWCNT on SR properties has been observed. The tensile strength of SR containing 1% w/w of the MMT/MWCNT (1 : 1) hybrid is improved by 215%, whereas the SR filled with MMT or MWCNT alone showed an improvement of 46 and 25%, respectively, over that of unfilled SR. In addition, SR/1 wt % MMT/MWCNT (1 : 1) nanocomposites also exhibit the maximum improvement in thermal stability corresponding to 10% weight loss by 70°C, crystallization and melting temperatures increased by 8 and 6°C as inferred from thermogravimetric analysis and differential scanning calorimetry, respectively. This approach is promising for the preparation of high‐performance SR nanocomposites by using different dimension nanofillers together. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41818. 相似文献
5.
The mechanical and fracture properties of vinyl‐ester composites reinforced with halloysite nanotubes have been investigated. Enhancements in toughness are attributed to crack bridging, deflection, and localized plastic deformation, while strength improvements can be attributed to the large aspect ratio of fillers, favorable interfacial adhesion and dispersion, and inter‐tubular interaction. Comparisons of experimental data on elastic modulus and mathematical models for predicting particulate polymer composites have verified the models of Paul and Guth. The aspect ratio of fillers and the degree of interfacial adhesion are crucial factors in the prediction of elastic modulus in these polymer nanocomposites. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1716–1725, 2013 相似文献
6.
A commercial production route to prepare polymer‐based nanocomposites by unmodified multilayer graphene 下载免费PDF全文
In this study, we report our progress toward an effective method to prepare polyamide 6 (PA6)/multilayer graphene (MLG) nanocomposites via in situ polymerization. The thermal and mechanical properties of PA6 nanocomposites were investigated with low unmodified MLG content of 0.01–0.5 wt %. The dispersion of MLG sheets in the host matrix was studied in extensive detail while the properties of the resultant nanocomposites were systematically measured. Results indicate that the mechanical properties of the nanocomposites were significantly enhanced; the flexural modulus, flexural strength and impact strength increased by ~97%, ~69%, and ~76% relative to pristine PA6. Furthermore, the thermal stability of nanocomposites was enhanced and the weight loss temperature of PA6 was increased ~15°C at 0.5 wt % content of MLG. Moreover, incorporation of low loading of MLG can increase the crystallization speed of PA6 composites and promote the formation of the γ‐crystalline phase while also improving the crystallization temperature. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42742. 相似文献
7.
Stretchable conductive films consisting of a layer of carbon nanomaterials, that is, carbon nanotubes (CNTs), mechanically exfoliated graphene (GE), or chemically reduced graphene oxide (rGO), deposited on polydimethylsiloxane (PDMS) films were prepared by spray coating. The correlations among the concentration of the carbon nanomaterials, the electrical resistance and the optical transmittance of the spray‐coated films were investigated. The results show that the conductivity of the CNT coatings was better than that of the GE‐based coatings. When the CNT concentration of the dispersion for spraying increased from 0.01 to 0.075 mg/mL, the surface electrical resistance decreased from 7.8 × 103 to 6.7 × 102 Ω, whereas for the GE or rGO coatings, the electrical resistance was several orders higher than that of the CNT coatings. The CNT spray‐coated films exhibited an optical transmittance of about 60% at a wavelength of 550 nm; this was higher than that of the GE or rGO spray‐coated films. The electric heating behaviors of the stretchable conductive films as functions of the applied voltage and the concentration of carbon nanomaterials and the electrical conductivity under tensile and bending strains were also investigated. The surface temperature of the CNT‐coated films rose rapidly up to 200°C within about 40 s when the applied voltage was 110 V. The stretchable conductive films have potential as electric heating elements because of their excellent conductive properties. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43243. 相似文献
8.
Mohd Shaiful Zaidi Mat Desa Azman Hassan Agus Arsad Reza Arjmandi Nor Nisa Balqis Mohammad 《应用聚合物科学杂志》2016,133(48)
The effects of natural rubber (NR) on the mechanical, thermal, and morphological properties of multiwalled carbon nanotube (CNT) reinforced poly(lactic acid) (PLA) nanocomposites prepared by melt blending were investigated. A PLA/NR blend and PLA/CNT nanocomposites were also produced for comparison. The tensile strength and Young's modulus of PLA/CNT nanocomposites improved significantly, whereas the impact strength decreased compared to neat PLA. The incorporation of NR into PLA/CNT significantly improved the impact strength and elongation at break of the nanocomposites, which showed approximately 200% and 850% increases at 20 wt % NR, respectively. However, the tensile strength and Young's modulus of PLA/NR/CNT nanocomposites decreased compared to PLA/CNT nanocomposites. The morphology analysis showed the homogeneous dispersion of NR particles in PLA/NR/CNT nanocomposites, while CNTs preferentially reside in the NR phase rather than the PLA matrix. In addition, the incorporation of NR into PLA/CNT lowered the thermal stability and glass‐transition temperature of the nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44344. 相似文献
9.
Elucidating the interactions between carbon nanotubes and carbon black with styrene butadiene rubber
Daniela B. García Marcela A. Mansilla Leandro N. Monsalve Emanuel Bilbao Ana Lucía Rodríguez Garraza Mariano M. Escobar 《应用聚合物科学杂志》2021,138(46):51362
The reinforcement mechanism of carbon nanotubes (CNT) on styrene butadiene rubber is studied through dynamic and swelling tests. Compounds containing carbon black (CB) and an unfilled one were prepared for comparison purposes. The dynamic properties are interpreted through the Maier-Göritz model to distinguish the contributions of stable and unstable crosslinks to the storage modulus, finding that the unstable ones become more relevant in samples containing a CNT concentration higher than 5 phr. In addition, the crosslinks density estimated by swelling and the stable contribution obtained with dynamical properties present the same tendency with the CNT amount. The former presents lower values, which can be explained considering that only stable crosslinks remain in the equilibrium-swollen state, while in the second one both stable and unstable are considered. In addition, differences in the filler-polymer interaction mechanisms are observed according to the morphology and aspect ratio of CNT in contrast to CB. 相似文献
10.
Blends of EPDM and chlorobutyl (CIIR) rubbers are used in nuclear plants where they have to withstand the combined effect of radiation and hydrocarbon aging. To improve their mechanical properties as well as hydrocarbon and gamma radiation resistance, the blends are reinforced with 0.5, 1, 1.5, and 2 phr of MWCNT. The increase in mechanical properties was highest for 1.5 phr MWCNT with 69% increase in tensile strength. The improvement in properties was correlated to MWCNT dispersion and filler–polymer interactions, which were confirmed by TEM and FTIR analysis. Hydrocarbon transport coefficients decreased on addition of MWCNT. The nanocomposites were exposed to 0.5, 1, and 2 MGy cumulative doses of gamma radiation. Depending on the radiation dose, crosslinking and/or chain scission occurred causes changes in physical properties. MWCNT reinforcement reduced the magnitude of changes in mechanical and transport properties after γ-irradiation. ESR and FTIR spectra provided qualitative information on free radical formation and chemical changes due to γ-rays exposure. To further enhance the properties, hybrid nanocomposites with 1.5 phr MWCNT and varying nanoclay contents (0.5, 1, 1.5, 2, and 5 phr) were prepared. Due to synergism between MWCNT and nanoclay, the hybrid composites had superior properties with hybrid containing 5 phr nanoclay giving 98% increase in tensile strength. 相似文献
11.
An experimental study is carried out to quantitatively assess the dispersion quality of carbon nanotubes (CNTs) in epoxy matrix as a function of CNT variant and weight fraction. To this end, two weight fractions (0.05% and 0.25%) of as-grown, oxidized, and functionalized CNTs are used to process CNT/epoxy nanocomposites. Scanning electron microscopy, X-ray diffraction, and Fourier transform infrared analysis of different variants of CNTs are used to establish the efficiency of purification route. While the relative change in mechanical properties is investigated through tensile and micro-hardness testing, thermal conductivity of different nanocomposites is measured to characterize the effect of CNT addition on the average thermal properties of epoxy. Later on, a quantitative analysis is carried out to establish the relationship between the observed improvements in average composite properties with the dispersion quality of CNTs in epoxy. It is shown that carboxylic (-COOH) functionalization reduces the average CNT agglomerate size and thus ensures better dispersion of CNTs in epoxy even at higher CNT weight fraction. The improved dispersion leads to enhanced interfacial interaction at the CNT/epoxy interface and hence provides higher relative improvement in nanocomposite properties compared to the samples prepared using as-grown and oxidized CNTs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48879. 相似文献
12.
The basic objective of this study is to investigate the mechanical properties of tyre tread compounds by gradual replacement of carbon black by multiwalled carbon nanotubes (MWCNTs) in a natural rubber–butadiene rubber‐based system. A rapid change in the mechanical properties is noticed even at very low concentrations of nanotubes though the total concentration of the filler is kept constant at 25 phr (parts per hundred rubber). The correlation of the bound rubber content with MWCNT loading directly supports the conclusion that MWCNTs increase the occluded rubber fraction. Transmission electron microscopy reveals a good dispersion of the MWCNT up to a certain concentration. In the presence of MWCNT, a prominent negative shift of the glass transition temperature of the compound is found. Thermal degradation behavior, aging, and swelling experiments were also carried out to understand the resulting effect of the incorporation of MWCNT in the rubber matrix. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3153–3160, 2013 相似文献
13.
The role of the interphase on the shear induced failure of multiwall carbon nanotubes reinforced epoxy nanocomposites 下载免费PDF全文
Leonel Matías Chiacchiarelli Mariano Martín Escobar José María Kenny Luigi Torre Analía Vazquez 《应用聚合物科学杂志》2015,132(4)
Multiwall Carbon Nanotubes (MWCNT) with an elevated aspect ratio were chemically functionalized with amines and two types of epoxide groups. Thermogravimetric analysis and Fourier Transform‐Infrared Spectroscopy (FTIR) analysis corroborated that the functionalization degree was substantial (up to 30 wt %) and the presence of a covalent bond with the MWCNT. The functionalized MWCNT (f‐CNT) were incorporated into an epoxy matrix after its dispersion in the diglycidyl ether of bisphenol A (DGEBA) precursor. To induce a shear failure mode, a short‐beam (SB) experimental setup was implemented. The SB shear strength (SBSS) proved that the functionalization had a strong influence on its value. For the case of pristine CNT, a neutral effect was obtained. A strong detrimental effect (?17.2% ± 9.5) was measured for the amine type f‐CNT and a positive effect (up to 10.9% ± 8.9) was measured of the epoxide type f‐CNT. Fractographic analysis of each formulation was correlated with SBSS performance, proving that the surface texture of the fractured samples was strongly correlated to its value. Furthermore, dynamic mechanical analysis proved that the damping factor and the crosslink molecular weight were correlated with the SBSS performance. A lower full width at half maximum of the damping factor was associated to an improvement of SBSS. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41364. 相似文献
14.
Stretchable conductive silicone rubber (SR) composites are important in wearable electronic devices and the crosslinking of SR composites is necessary for their applications. But the effect of the crosslinking reaction on the electrical conductivity of SR composites is rarely reported. In this article, the effect of crosslinking reaction on the electrical conductivity of SR composites filled with conductive carbon black, carbon nanotubes, and graphene are studied. The crosslink density of SR composites increases with increasing curing time, but the electrical conductivity decreases sharply at the early stage of crosslinking, especially for SR/conductive carbon black composite, which is ascribed to the reaggregation of conductive nanofillers in SR during the crosslinking process. The elastic modulus of the three SR composites gradually increases while the elongation at break decreases with increasing curing time, and the SR/carbon black composite shows ultra-high elongation at break (1578%). In addition, SR/graphene composite is more sensitive to the extension strain than SR/carbon black and SR/carbon nanotubes composites, and its gauge factor is 414 at the strain ranges of 3–25%. This research work brings a new method to optimize the crosslinking structure of conductive SR composites. 相似文献
15.
Microwave responsive epoxy nanocomposites reinforced by carbon nanomaterials of different dimensions 下载免费PDF全文
This study fabricated nanocomposites consisting of epoxy‐based shape memory polymer (ESMP) matrix and carbon nanofillers. The nanofillers include zero‐dimensional carbon black, one‐dimensional multiwalled carbon nanotubes, two‐dimensional (2D) graphene nanoplatelets, and three‐dimensional (3D) functionalized graphene sheets, which are all efficient microwave‐absorbing materials that can transform microwaves into heat energy. As a result, the temperatures of the nanocomposites increased more rapidly than pristine ESMP in microwaves. The functionalized graphene sheets were found to transform the microwaves into heat more efficiently than the other nanofillers. Possible microwave propagation paths in the nanocomposites were proposed. Moreover, the nanocomposites displayed significantly higher mechanical strengths than pristine ESMP. The low cost and strong nanocomposites with fast microwave responses may be applied as actuators or deployable devices in medical treatments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45676. 相似文献
16.
Synergistic effects of carbon nanotubes and carbon black on the fracture and fatigue resistance of natural rubber composites 下载免费PDF全文
The quasi‐static fracture and dynamic fatigue behaviors of natural rubber composites reinforced with hybrid carbon nanotube bundles (CNTBs) and carbon black (CB) at similar hardness values were investigated on the basis of fracture mechanical methods. Mechanical measurement and J‐integral tests were carried out to characterize the quasi‐static fracture resistance. Dynamic fatigue tests were performed under cyclic constant strain conditions with single‐edged notched test pieces. The results indicate that synergistic effects between CNTBs and CB on the mechanical properties, fracture, and fatigue resistance were obtained. The composite reinforced with 3‐phr CNTBs displayed the strongest fatigue resistance. The synergistic mechanisms and dominating factors of quasi‐static and dynamic failure, such as the dispersion state of nanotubes, hybrid filler network structure, strain‐induced crystallization, tearing energy input, and viscoelastic hysteresis loss, were examined. The weakest fatigue resistance of the composite filled with 5‐phr CNTBs was ascribed to its strikingly high hysteresis, which resulted in marked heat generation under dynamic fatigue conditions. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42075. 相似文献
17.
Multiwall carbon nanotubes were dispersed in a styrene–butadiene copolymer. The effect of nanotube concentration on the tensile characteristics of the composites was examined. Electrical properties carried out under uniaxial extension show an increase in resistivity upon gradual stretching. A second stretch performed after total release of the stress was shown to lead to a flat response in resistivity. Atomic force microscopy was used to examine orientational effects and changes in filler structure occurring upon application of an uniaxial deformation. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007 相似文献
18.
Functionalization of carbon nanotubes with (3‐glycidyloxypropyl)‐trimethoxysilane: Effect of wrapping on epoxy matrix nanocomposites 下载免费PDF全文
In this work, multiwalled carbon nanotubes (MWCNT), after previous oxidation, are functionalized with excess (3‐glycidyloxypropyl)trimethoxysilane (GLYMO) and used as reinforcement in epoxy matrix nanocomposites. Infrared, Raman, and energy‐dispersive X‐ray spectroscopies confirm the silanization of the MWCNT, while transmission electron microscopy images show that oxidized nanotubes presented less entanglement than pristine and silanized MWCNT. Thickening of the nanotubes is also observed after silanization, suggesting that the MWCNT are wrapped by siloxane chains. Field‐emission scanning electron microscopy reveals that oxidized nanotubes are better dispersed in the matrix, providing nanocomposites with better mechanical properties than those reinforced with pristine and silanized MWCNT. On the other hand, the glass transition temperature of the nanocomposite with 0.05 wt % MWCNT‐GLYMO increased by 14 °C compared to the neat epoxy resin, suggesting a strong matrix–nanotube adhesion. The functionalization of nanotubes using an excess amount of silane can thus favor the formation of an organosiloxane coating on the MWCNT, preventing its dispersion and contributing to poor mechanical properties of epoxy nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44245. 相似文献
19.
In this study, nanosheets including graphene oxide (GO) and reduced graphene oxide (rGO), were incorporated into natural rubber (NR), to study the effects of substituting GO or rGO for carbon black (CB) on the structure and performance of NR/CB composites. The morphological observations revealed the dispersion of CB was improved by partially substituting nanosheets for CB. The improvements in static and dynamic mechanical properties were achieved at small substitution content of GO or rGO nanosheets. With substitution of rGO nanosheets, significant improvement in flex cracking resistance was achieved. NR/CB/rGO (NRG) composites has a much lower heat build‐up value compared with NR/CB/GO (NG) composites at a high load of nanosheets. However, both GO and rGO tended to aggregate at a high concentration, which led to the poor efficiency on enhancing the dynamic properties, or even deteriorate the performance of rubber composites. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41832. 相似文献
20.
Electrically conductive polycarbonate/ethylene‐propylene copolymer/multi‐walled carbon nanotubes nanocomposites with improved mechanical properties 下载免费PDF全文
In this article, the effect of Multi‐walled carbon nanotubes (MWCNTs) on the electrical conductivity and mechanical properties of polycarbonate (PC) toughened with cross‐linked ethylene‐propylene copolymer (EPC) was investigated. The solubility parameters of the PC and EPC were calculated using Hoy methods to clarify the miscibility of the polymer blends. It could be concluded that in the cooled state, the blends form a heterogeneous structure with two separate phases. The tensile, flexural, impact toughness properties of the PC/EPC blend and PC/EPC/MWCNT nanocomposites were carried out to illuminate the optimum concentration of polymer blends and MWCNTs. The 335% increment for the impact strength results appeared with combination of 10% EPC in the PC matrix. The flexural modulus and strength of PC/EPC blend increased by 75.1% and 59.1%, respectively. The Nielsen model was performed to fit the best curve of theoretical simulation to experimental results for elastomeric dispersed in the plastic matrix. Halpin‐Tsai model was applied to estimate the stiffness of nanocomposites blends with different volume fraction and aspect ratio of MWCNTs in the PC/EPC blends. Finally, in the presence of MWCNTs, all nanocomposite samples were semi‐conducting and the percolation threshold of the PC/EPC (10%) blends was between 0.5% and 1.0% MWCNTs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44661. 相似文献