共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Most numerical simulations of the flow in an internal mixer are based on the assumption that the internal mixer is totally filled with rubber compounds. However, in fact, the internal mixers are only partially filled with rubber compounds, thus posing many challenges for researchers in simulating the flow in the internal mixer. In this study, the volume of fluid method and the dynamic mesh technology of commercial CFD software FLUENT were used to simulate the flow of rubber compound in a partially filled internal mixer. To improve simulation accuracy, every 18 degrees in circumferential direction, we manually re‐meshed the calculated transient location of the rubber compound. Thus, we obtained the transient distribution of the rubber compound in the internal mixer as the rotors rotated. The simulation results showed that voids were mainly located behind the rotor blades, and there were material exchanges in the bridge regions between the two chambers. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42496. 相似文献
3.
Numerical simulation on residual thickness of pipes with curved sections in water‐assisted co‐injection molding 下载免费PDF全文
The residual thicknesses of the skin and the inner layers are important quality indicators of water‐assisted co‐injection molding (WACIM) process or overflow WACIM (O‐WACIM) parts. At the curved section, the residual thicknesses change significantly. A numerical simulation program based on the computational fluid dynamics method was developed to simulate the O‐WACIM process. After the numerical simulation program was validated with the experimental results, it was used to study the effects of the bending radii and bending angles on the residual thicknesses of the skin and inner layers of O‐WACIM parts. The results showed that the penetration of the inner melt and water was always close to the inner concave side due to the higher local pressure gradient and temperature. The effects of processing parameters on the residual thicknesses of the skin and inner layers were investigated using the orthogonal simulation method. It was found that the residual thicknesses of the skin/inner layer at the inner concave/outer convex side are mainly influenced by different parameters. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42468. 相似文献
4.
Hydrated silicas impart better physical properties to polar rubbers, compared to those of hydrocarbon rubbers. However, to achieve optimum properties silane coupling agents are crucial in such formulations. Epoxidized natural rubber (ENR) in small proportions is used as a reinforcement modifier for silica‐filled nitrile rubber (NBR). Two systems of cure were used: N‐cyclohexyl‐ 2‐benzthiazyl sulfenamide (CBS) alone and in combination with diphenyl guanidine (DPG). In the CBS accelerated system, incorporation of an optimum concentration of about 15% of ENR on total rubber was found to improve technological properties. Addition of a secondary accelerator further improves these properties. Comparable results are obtained with those containing coupling agent and NBR–ISAF. High bound rubber and volume fraction values indicate a high polymer–filler interaction and gel content resulting from the NBR–ENR interaction. Results of this study reveal that ENR could be used as a reinforcement modifier for the NBR–silica system. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 292–306, 2002 相似文献
5.
Silica (SiO2) modified by in situ solid‐phase grafting was used for natural rubber (NR) reinforcement. The physical mechanical properties and Payne effect of natural rubber reinforced by SiO2 and graft‐modified silica (G‐SiO2) were analyzed systematically. The results showed the comprehensive performance of NR/G‐SiO2 was better than that of NR/SiO2. There was a proportional relationship between the filler loading and Payne effect. NR/G‐SiO2 presented weaker Payne effect in comparison with NR/SiO2. A qualitative analysis on the correlation of filler 3D network structure and filler loading was carried out according to the relationship between the bound rubber content and the shear modulus. The Payne effect mechanisms of rubber compounds differed according to the different filler loading. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43891. 相似文献
6.
7.
The effects of mixing temperature and mixing time on the reaction of 3‐octanoylthio‐1‐propyltriethoxysilane (NXT silane) during mixing with precipitated silica and natural rubber (NR) were investigated. Results showed that the reaction between NXT silane and precipitated silica can proceed at temperatures above 130°C. Because of the blocking group of NXT silane, the silane–NR coupling reactivity is low, so that the reaction of NXT silane with NR occurs only during the curing period. There is no reaction between NXT silane and NR during mixing, which showed that the mixing time of silica‐filled NR compound containing NXT silane must be longer than 10 min at 150°C to obtain the desired silane coupling efficiency. With increasing mill temperature, the coupling efficiency increases. A high mixing temperature promotes improvement of silane–silica coupling efficiency, although the tensile strength, 100% modulus, 300% modulus, and hardness of NR vulcanizates decrease. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2295–2301, 2004 相似文献
8.
Chlorinated ground rubber tire (Cl‐GRT) particles were used as filler in a plasticized polyvinylchloride (PVC) to develop a melt‐processable rubber composition. Physical properties of the Cl‐GRT‐filled PVC compound showed improvement compared to the nonchlorinated counterpart. Interaction between Cl‐GRT and PVC was examined on the basis of results of stress relaxation, dynamic mechanical thermal analysis, and solvent swelling studies. The Cl‐GRT could be loaded upto 40 parts per hundred parts of PVC, and the composition still retains the elastomeric characteristics. The Cl‐GRT‐filled composite was found to be reprocessable like the unfilled PVC compound. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 622–631, 2002; DOI 10.1002/app.10352 相似文献
9.
Effect of aluminum hydroxide on low‐molecular‐weight siloxane distribution and microstructure of high‐temperature vulcanized silicone rubber 下载免费PDF全文
Zheng Wang Chongshan Yin Yi Luo Long Chen Yuming Zhou Chunqing He Pengfei Fang Xiangyang Peng Zhen Huang 《应用聚合物科学杂志》2018,135(6)
This paper investigates the effect of aluminum hydroxide (ATH) content on the free volume and surface recovery property of polydimethylsiloxane (PDMS)–based silicone rubber containing low‐molecular‐weight siloxanes. With increasing ratio of ATH up to 43.1 wt %, the concentration of cyclic siloxanes (Dn = [(CH3)2SiO]n, n = 4–12) in the PDMS matrix increases remarkably, indicative of a spacing effect of ATH particles on the crosslinking of PDMS chains. When more ATH is added, the concentration of D4–D12 began to decrease. PDMS network variation is verified by free volume size corresponding to τ3 in positron annihilation lifetime spectroscopy. The o‐Ps intensity decreases linearly with ATH content. Data obtained from X‐ray photoelectron spectroscopy suggest the surface recovery property is weakened by ATH. This process is dominated by the amount of free volume holes in the sample. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45803. 相似文献
10.
Sung‐Seen Choi 《应用聚合物科学杂志》2002,85(2):385-393
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002 相似文献
11.
Experimental and numerical study of distortion in flat,L‐shaped,and U‐shaped carbon fiber–epoxy composite parts 下载免费PDF全文
Pooneh Roozbehjavan Behrouz Tavakol Ashraf Ahmed Hoda Koushyar Rony Das Ronald Joven Bob Minaie 《应用聚合物科学杂志》2014,131(13)
In this study, flat composite panels were fabricated to find the effect of different manufacturing parameters, including stacking sequence, part thickness, and tooling material, on distortion of carbon fiber‐epoxy composite parts. L‐shaped and U‐shaped panels were also made to investigate the effect of stacking sequence on spring‐in angle and warpage of the curved panels. Results showed that distortion of the flat panels caused by asymmetry in the stacking sequence was an order of magnitude greater than distortion of the panels with an unbalanced stacking sequence; whereas in the curved panels, the panel with an asymmetric stacking sequence showed the least spring‐in angle, and the largest angle was observed in the symmetric panel. MSC Marc was used to predict distortion of the panels, and the simulation results were compared with the experimental results for several stacking sequences of the flat and the L‐shaped panels. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40439. 相似文献
12.
Most unfilled elastomers exhibit a high electrical resistance. Fillers are usually added to elastomers to enhance their mechanical properties. Frequently the filler type used is an electrically conductive carbon black and the inclusion of such fillers reduces the resistivity of the elastomer compound. Previous work has shown that for elastomers containing high abrasion furnace, carbon black fillers such as N330 (or N300 series) at a volume fraction above the percolation threshold the resistivity changes with strain, the precise resistivity versus strain behavior being nonlinear and irreversible for conventional carbon black fillers. A strain‐measuring device, deriving strain directly from a measure of the resistivity, requires that the behavior be reversible and reproducible from cycle to cycle. This work presents the electrical resistivity behavior of a natural rubber (NR) compound filled with Printex XE2 carbon black. This type of filler has a significantly different morphology to the N300 series blacks examined previously. The Printex was incorporated into the rubber at a volume fraction above its percolation threshold and its behavior is contrasted to that observed with N300 series carbon black‐filled NR. Here, and for the first time, reversible electrical resistivity dependence with strain is reported for an elastomer filled with Printex XE2. This reversible behavior under strain opens up the possibility of applications, such as a flexible load sensor, pressure sensor, or switch. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 相似文献
13.
High‐abrasion furnace black (HAF, grade N330)–filled powdered styrene butadiene rubber [P(SBR/HAF)] was prepared and the particle size distribution, mixing behavior in a laboratory mixer, and mechanical properties of P(SBR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black–filled free‐flowing, noncontact staining SBR powders, with particle diameter less than 0.9 mm, under the following conditions: carbon black content > 40 phr, emulsifier/carbon black ratio > 0.02, and coating resin content > 2.5 phr. Over the experimental range, the mixing torque τα of P(SBR/HAF) was not as sensitive to carbon black content and mixing temperature as that of HAF‐filled bale SBR (SBR/HAF), whereas the temperature build‐up ΔT showed little dependency on carbon black content. Compared with SBR/HAF, P(SBR/HAF) showed a 20–30% mixing energy reduction with high carbon black content (>30 phr), which confers to powdered SBR good prospects for internal mixing. Carbon black and the rubber matrix formed a macroscopic homogenization in P(SBR/HAF), and the incorporation step is not obvious in the internal mixing processing results in these special mixing behaviors of P(SBR/HAF). A novel mixing model of carbon black–filled powdered rubber, during the mixing process in an internal mixer, was proposed based on the special mixing behaviors. P(SBR/HAF) vulcanizate showed better mechanical properties than those of SBR/HAF, dependent primarily on the absence of free carbon black and a fine dispersion of filler on the rubber matrix attributed to the proper preparation conditions of noncontact staining carbon black–filled powdered SBR. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2494–2508, 2004 相似文献
14.
Effects of the short‐fiber tip geometry and interphase properties on the interfacial debonding behavior of rubber matrix composites 下载免费PDF全文
An axisymmetric finite element model of a single fiber embedded in a rubber matrix was established. A cohesive zone model was used for the fiber–matrix interface because of the interfacial failure. The effect of the fiber tip shape on the interfacial debonding of short‐fiber‐reinforced rubber matrix sealing composites (SFRCs) was investigated; the shapes were flat, semi‐elliptical, hemispherical, and conoid, respectively. The initial strain of the interfacial debonding (ε0) was obtained. We found that among the researched fiber tips, ε0 of the SFRC reinforced with the hemispherical tip fiber appeared to be the maximum. The initial locations of interfacial debonding were also determined. The results show that the initial locations of the interfacial debonding moved from the edge to the center of the fiber tip when the ratio of the semimajor axis and semiminor axis of the semi‐elliptical fiber tip increased gradually. Further study on the effect of the interphase properties on ε0 with the hemispherical fiber tip was conducted. The results indicate that an interphase thickness of 0.2 μm and an interphase elastic modulus of about 752 MPa were optimal for restraining the initiation of the interfacial debonding. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42774. 相似文献
15.
The structure of bound rubber in the composites from fumed silica (A200, Nippon Aerosil Co., Japan) and polyethylacrylate rubber (PEA) was studied as a function of mixing temperature. The fraction of bound rubber in the composites increased gradually with increasing the mixing temperature from 80 to 120°C, followed by saturation above 120°C. High‐resolution solid‐state NMR results revealed that there was no chemical bonding between silanol groups and PEA molecules. Scanning electron microscope and optical microscope observation of the composites indicated that, with increasing mixing temperature, the size of agglomerates formed by silica particles decreased. Further, the molecular weight retention of PEA dropped abruptly above 120°C. Dynamic viscoelastic measurements of the composites suggest that the development of network structure in the composites was greatly affected by the mixing temperature. Based on these data, structure development in composites is discussed. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2529–2538, 1999 相似文献
16.
Reethamma Joseph Rosamma Alex K. N. Madhusoodanan C. K. Premalatha Baby Kuriakose 《应用聚合物科学杂志》2004,92(6):3531-3536
To obtain good reinforcement by silica filler in nonpolar rubbers, it is almost essential to use coupling agents, such as bis(triethoxy silyl propyl) tetrasulfane (TESPT). Chemicals that can interact with the silanol groups on the silica particles and reduce their network formation are also expected to enhance reinforcement. We made a comparative evaluation of TESPT, epoxidized rubber seed oil (ERSO), and their combination as a coupling agent and a plasticizer in silica‐filled natural rubber compounds. The results indicate that compounds containing ERSO showed physical and mechanical properties between that of TESPT and naphthenic oil. The action of ERSO in the improvement of the properties was expected to be bifunctional and similar to that of TESPT; that is, it caused the hydrophobation of silica, which increased its degree of dispersion and the formation of chemical bonds with the rubber, thereby ensuring strong polymer–filler interactions. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3531–3536, 2004 相似文献
17.
A mineral sepiolite (magnesium silicate with microfibrilar morphology) was calcined at 325°C and its behavior as filler for ethylene‐propylene (EPM) compounds designed for electrical cable coating was studied. This calcined sepiolite is a material with good dielectric and physical properties and provides a reinforcing effect, increased when is treated with a coupling agent. The performance of this filler was compared to a commercial clay calcined at 1000°C. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 714–718, 2001 相似文献
18.
Real‐time property prediction for an industrial rubber‐mixing process with probabilistic ensemble Gaussian process regression models 下载免费PDF全文
In internal rubber‐mixing processes, data‐driven soft sensors have become increasingly important for providing online measurements for the Mooney viscosity information. Nevertheless, the prediction uncertainty of the model has rarely been explored. Additionally, traditional viscosity prediction models are based on single models and, thus, may not be appropriate for complex processes with multiple recipes and shifting operating conditions. To address both problems simultaneously, we propose a new ensemble Gaussian process regression (EGPR)‐based modeling method. First, several local Gaussian process regression (GPR) models were built with the training samples in each subclass. Then, the prediction uncertainty was adopted to evaluate the probabilistic relationship between the new test sample and several local GPR models. Moreover, the prediction value and the prediction variance was generated automatically with Bayesian inference. The prediction results in an industrial rubber‐mixing process show the superiority of EGPR in terms of prediction accuracy and reliability. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41432. 相似文献
19.
Natural rubber composites were prepared by the incorporation of palm ash at different loadings into a natural rubber matrix with a laboratory‐size two‐roll mill (160 × 320 mm2) maintained at 70 ± 5°C in accordance with the method described by ASTM D 3184–89. A coupling agent, maleated natural rubber (MANR), was used to improve the mechanical properties of the natural rubber composites. The results indicated that the scorch time and cure time decreased with increasing filler loading, whereas the maximum torque exhibited an increasing trend. Increasing the palm ash loading increased the tensile modulus, but the tensile strength, fatigue life, and elongation at break decreased. The rubber–filler interactions of the composites decreased with increasing filler loading. Scanning electron microscopy of the tensile fracture surfaces of the composites and rubber–filler interaction studies showed that the presence of MANR enhanced the interfacial interaction of the palm ash filler and natural rubber matrix. The presence of MANR also enhanced the tensile properties and fatigue life of palm‐ash‐filled natural rubber composites. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
20.
Jean L. Leblanc 《应用聚合物科学杂志》1997,66(12):2257-2268
Some of the theories that have been developed to explain the origin of bound rubber are critically reviewed and discussed with respect to published data. Theories for carbon black filled compounds and for silica–silicone rubber mixtures are considered; the phenomena involved are likely to be very different, with clear chemical aspects for the latter systems. A common feature emerges, however, from these theories: the area of the polymer–filler interaction site, which is generally considered as a fitting parameter in most approaches. This article concentrates on this aspect and suggests that, with respect to recent findings about the very surface of carbon black particles, an explanation for bound rubber can be offered that considers strong topological constraints exerted by the filler surface on rubber segments. Calculations of interaction site area made with experimental data give values close to a fraction of the half-lateral surface of the structural unit representative of the rubber considered. It follows that the bound rubber variation during storage can now be understood by considering a slow replacement of short rubber chains initially adsorbed on filler particles by larger ones, as demonstrated by calculated data. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 2257–2268, 1997 相似文献