首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
One kind of polymer gel P(AM‐AA‐AMPS) was prepared by radical aqueous copolymerization, using acrylamide (AM), acrylic acid (AA) and 1‐acrylanmido‐2‐methylpropanesulfonic acid (AMPS) as monomers, N,N‐methacrylamide (MBA) as crosslinker and ammonium persulfate (APS) as initiator. The microstructure and molecular structure of the polymer gel were characterized by environmental scanning electron microscope (ESEM), infrared spectrometer (IR) and thermal gravity analysis (TGA). Main factors affecting the gelation behavior of P(AM‐AA‐AMPS) were qualitatively and quantitatively studied by multi‐speckle diffusion wave spectroscopy (MS‐DWS) technology, and the elasticity index (EI) and macroscopic viscosity index (MVI) were introduced to evaluate the elasticity and viscosity of the polymer gel. The results show that the synthesized P(AM‐AA‐AMPS) polymer gel has three‐dimensional network structure gel with thermally resistant and salts tolerant groups. The EI and MVI of solution increase abruptly during the gelation time and the two indexes tend to stabilize. Under certain conditions, with the increase of reaction temperature and concentration of monomers and initiator, the gelation time of polymer gel gets shorter and the gel strength increases; with the increase of concentration of crosslinker, the strength of polymer gels increases, while the gelation time remains almost unchanged. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43364.  相似文献   

2.
Polymer gels have been widely used for water shutoff in mature oil fields. In this paper, polyacrylamide (PAM)–montmorillonite (MMT) nanocomposites (NC) were prepared through in situ intercalative polymerization. Fourier transform infrared spectroscopy and X‐ray diffraction were conducted to characterize the prepared PAM/MMT nanocomposites. The gelation performance of poly(ethylene imine) (PEI) crosslinking PAM/MMT nanocomposite gel system (NC/PEI gel system) was systematically investigated by bottle testing and viscosity measurement methods. The results showed that the gelation performance of the NC/PEI gel system was greatly affected by the total dissolved solids, PAM/MMT nanocomposite concentration, and PEI concentration. The NC/PEI gel system exhibited much better thermal stability and gelation performance than the PAM/PEI gel system at the same conditions. The gelation performance after flowing through porous media of the NC/PEI gel system before injection and that of the subsequently injected gel system was different. The gel strength decreased and the gelation time was delayed after the gel system before injection was flowed through porous media. However, the gel strength of the subsequently injected gel system did not decrease, and only the gelation time was delayed after flowing through porous media. This study suggests that the NC/PEI gel system can be used as a potential water‐shutoff agent in high‐temperature reservoirs. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44243.  相似文献   

3.
This article describes a new gel‐spinning process for making high‐strength poly(ethylene oxide) (PEO) fibers. The PEO gel‐spinning process was enabled through an oligomer/polymer blend in place of conventional organic solvents, and the gelation and solvent‐like properties were investigated. A 92/8 wt% poly(ethylene glycol)/PEO gel exhibited a melting temperature around 45°C and was highly stretchable at room temperature. Some salient features of a gel‐spun PEO fiber with a draw ratio of 60 are tensile strength at break = 0.66 ± 0.04 GPa, Young's modulus = 4.3 ± 0.1 GPa, and a toughness corresponding to 117 MJ/m3. These numbers are significantly higher than those previously reported. Wide‐angle x‐ray diffraction of the high‐strength fibers showed good molecular orientation along the fiber direction. The results also demonstrate the potential of further improvement of mechanical properties. POLYM. ENG. SCI., 54:2839–2847, 2014. © 2014 Society of Plastics Engineers  相似文献   

4.
Polymer gels are effective tools that are still widely used in mature oilfield development to stop unwanted fluid production from oil and gas wells, but conventional gelant formulations have become increasingly difficult to apply at low and ultralow temperatures. Because of this situation, the gelation performance of phenol–formaldehyde‐based gel systems at a low temperature of 25°C is discussed in this article. The results show that the gelation time and strength of the gel systems can be perfectly controlled by the adjustment of the polymer concentration, the molecular weight, the crosslinking agent concentration, the ammonium salt concentration, and the composition. The polymer concentration and molecular weight can affect not only the gelation time and the gel strength but also its stability. The ammonium salt concentration affected not only the gelation time but also its viscosity before a detectable gel formed. Among them, the polymer concentration was the most important factor affecting the gel stability. For low‐temperature reservoirs, the phenol–formaldehyde‐based gel system achieved a much longer gelation time. Polymer gels formulated with a combination of 0.2–0.4 wt % polymer, 0.5–1.0 wt % formaldehyde or phenol–formaldehyde, and 0.1–0.6 wt % ammonium salt, and we added 0.02–0.03 wt % resorcinol to provide a gelation time between 2 h and 2 days. The maximum gel strength reached code I. The results of this study suggest that the formaldehyde‐based gel system could be used effectively in low‐temperature reservoirs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40657.  相似文献   

5.
In an effort to create an in situ physically and chemically cross‐linked hydrogel for in vivo applications, N‐isopropylacrylamide (NIPAAm) was copolymerized with poly(ethylene glycol)‐monoacrylate (PEG‐monoacrylate) and then the hydroxyl terminus of the PEG was further modified with acryloyl chloride to form poly(NIPAAm‐co‐PEG) with acrylate terminated pendant groups. In addition to physically gelling with temperature changes, when mixed with a multi‐thiol compound such as pentaerythritol tetrakis 3‐mercaptopropionate (QT) in phosphate buffer saline solution of pH 7.4, this polymer formed a chemical gel via a Michael‐type addition reaction. The chemical gelation time of the polymer was affected by mixing time; swelling of the copolymer solutions was temperature dependant. Because of its unique gelation properties, this material may be better suited for long‐term functional replacement applications than other thermo‐sensitive physical gels. Also, the PEG content of this material may render it more biocompatible than similar HEMA‐based precursors in previous simultaneous chemically and physically gelling materials. With its improved mechanical strength and biocompatibility, this material could potentially be applied as a thermally gelling injectable biomaterial for aneurysm or arteriovenous malformation (AVM) occlusion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

6.
A high‐temperature (200°C)‐resistant polymer gel system was developed from partially hydrolyzed polyacrylamide (HPAM), chromium lactate (CrL), and water‐soluble phenol/formaldehyde resin (WPF) mixed cross‐linkers. Rheological measurements indicated that the gelation process of the gel system could be divided into four successive steps: induction, first cross‐linking with metal cross‐linker, secondary cross‐linking with organic cross‐linker, and stabilization. Effects of various parameters that affect the gelation time and gel strength including polymer concentration, cross‐linker concentration, salinity, pH, and the gelation temperature were evaluated. Gelant formulated with 0.5 wt % HPAM, 0.1 wt % CrL, and 0.9 wt % WPF and treated at 80°C for 48 h showed sufficient gelation time, high rigidity, and good thermal stability. Morphology observation by scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the gel had compact network microstructure. A cross‐linking mechanism for the gel system was proposed based on the gelation process and experimental results. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42261.  相似文献   

7.
To further enhance oil recovery of high temperature and high salinity reservoir at Tahe Oilfield, field test results from profile control and oil displacement of gel were carried out in this article. Static and dynamic evaluations were performed through gel strength code method, environment scanning electron microscope, and physical simulation experiment devices. The field test results show that, under the conditions of high temperature (100.8 °C) and salinity (19.8 × 104 mg/L), the stable gel system was formed with gelling time range from 26 to 45 h, gel strength ranging from E to H, and dehydrating amount lower than 3.0% after ageing 60 days. Meanwhile, the microstructure is very stable. When the permeability and gel strength ranges from 0.212 to 0.970 μm2 and E to H, respectively, the plugging ratio is larger than 85%, and the plugging performance becomes better with the increase of permeability or gel strength. Due to the profile improvement rate of 99.8% and the oil recovery up to 28.5%, profile control and oil displacement technology of gel can effectively promote fluid diverting. The water cut reduced from 95.2% to 89.0% during field test carried out in Tahe Oilfield, which means that profile control and oil displacement technology of gel could stabilize oil production by water control effectively. Also, this technology has a wide application prospective that provides with strong technical support for further enhanced oil recovery in high temperature and high salinity reservoirs. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46075.  相似文献   

8.
In this study, the zirconium acetate crosslinked gel systems are studied owing to their environment‐friendly and gelation performance in low‐temperature reservoirs through rheological measurements, environmental scanning electron microscopy, and scanning electron microscopy. The effects of various parameters on the gelation properties, stability, and microstructure in bottle test and porous media were addressed. With the increase of concentrations and temperature, gelation time is reduced and gel strength is increased. In addition, the gel systems show salt tolerance and shearing resistance. The environment‐friendly gel systems have a high stability in both injection water and formation water. A three‐dimensional network structure was formed in the gel and confirmed by environmental scanning electron microscopy. The three‐dimensional gel network was also formed in porous media, which bridges across the pore throats and reduced the water permeability in the formation. This study suggests that environment‐friendly polymer gels can be used for water shut‐off treatments in low‐temperature reservoirs. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40154.  相似文献   

9.
Submicron‐sized thermoresponsive poly(N ‐isopropylacrylamide‐co ‐acrylic acid) microgels were synthesized by soap‐free emulsion polymerization. The physical state of the microgel suspensions, in a wide range of polymer concentrations (1.1–7.1 wt %), transformed from fluid to gel when the temperature was elevated across their volume phase transition temperature at pH = 3.0. Such thermoinduced gelation behavior was studied in detail by small‐deformation oscillatory rheological measurements within the linear viscoelastic region. It was found that the gelation temperature was strongly affected by the polymer concentration, decreasing as the polymer concentration increased. The gelation kinetics showed that the suspension gelled more quickly at either larger polymer concentration or higher isothermal heating temperature. In an isothermal frequency sweep for the as‐formed gels, both storage and loss moduli, G′ and G″ , exhibited a power‐law behavior, that is, G′ (ω) ~ ω0.2–0.4 and G″ (ω) ~ ω0.46?0.50 within the frequency range where G′ dominates G″ . In addition, the elasticity of the gels, which results from the attractive particle bonds, increased markedly with increasing polymer concentration. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45259.  相似文献   

10.
Linked polymer solution (LPS) is a nanoparticle polymer and designed by crosslinking a high molecular weight partially hydrolyzed polyacrylamide (HPAM) with aluminum (III). It has been applied in the oil industry to enhance oil recovery by improving sweep efficiency and by microscopic diversion in porous media. To achieve good propagation properties, aggregates formed by intermolecular crosslinking and gel formation should be avoided. To our knowledge, there is no established method to distinguish between intra‐ and intermolecular crosslinking for high molecular weight (>10 × 106 Da), low concentration (<1000 ppm), polydisperse solutions of partially hydrolyzed polyacrylamides in high salinity solvents (5 wt % NaCl). The high salinity solvent is relevant to represent for formation water in many oil reservoirs. The main objective of the present study is to establish an experimental method for determining phase transition of LPS from monomeric coiled state to aggregated state in a high salinity solvent. No single experimental methods are conclusive and we have therefore applied a combinatorics approach including two‐dimensional NMR, dynamic rheology, and UV spectroscopy. The different techniques show similar trends, which allow overall interpretations of phase transitions to be made. The experimental results indicated that the LPS solution at high salinity solvent underwent a phase transition by chain re‐expansion, called reentrant transition. The transition point was observed at addition of 100 ppm of Al3+. Higher concentrations of Al3+ suppressed the rate of reentrant transition, most likely because of intramolecular crosslinking of HPAM chains by Al3+. Intermolecular crosslinking reaction was not observed at these conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43825.  相似文献   

11.
Integrally skinned asymmetric flat sheet membranes were prepared from poly(2,6‐dimethyl 1,4‐phenylene oxide)(PPO) for CO2–CH4 separation. Various experiments were carried out to identify PPO membranes, which have good mechanical strength and gas separation abilities. Membrane strength and selectivity depend on the interplay of the rate of precipitation and the rate of crystallization of the PPO. The effects of major variables involved in the membrane formation and performance, including the concentration of the polymer, solvent, and additive, the casting thickness, the evaporation time before gelation, and the temperature of the polymer solution, were investigated. Factorial design experiments were carried out to identify the factor effects. The membrane performance was modelled and optimized to approach preset values for high CO2 permeance and a high CO2 : CH4 permeance ratio. Membranes were prepared based on the optimum conditions identified by the model. Essentially, defect‐free membranes were prepared at these conditions, which resulted in a pure gas permeance of 9.2 × 10−9 mol/m2 s Pa for CO2 and a permeance ratio of 19.2 for CO2 : CH4. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1601–1610, 1999  相似文献   

12.
In this work, the rheological characterization of the gel point in polymer‐modified asphalts is carried out. The viscoelastic properties of polymer‐modified asphalts, in which the polymer is styrene–ethylene butylene–styrene (SEBS) with grafted maleic anhydride (MAH), were measured as a function of MAH concentration. The crosslinking reaction that leads to gelation is characterized by power‐law frequency‐dependent loss and storage modulus (G″ and G′). The relaxation exponent n (a viscoelastic parameter related to the cluster size of the gel) and gel strength S (related to the mobility on the crosslinked chain segments) were determined. The value of the power‐law exponents depends on the composition of polymer, ranging from 0.30 to 0.56, while the value of the rigidity modulus at the gelation point (S) increases with the amount of reactive groups of the modifier polymer. Both n and S are temperature‐dependent in the blends. The blends containing gels present a coarse morphology, which is related to the rheological properties of the matrix and dispersed phase. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
The synthesis, characterization, partial hydrolysis, and salt formation of polyisoprene‐co‐poly(tert‐butyl methacrylate) and the electrorheological properties of its suspensions were investigated. The copolymer was characterized by gel permeation chromatography, viscosity measurements, 1H‐NMR, Fourier transform infrared spectroscopy, particle size measurements, and elemental analysis. The poly(tert‐butyl methacrylate) units of the copolymer were partially hydrolyzed by p‐toluene sulfonic acid monohydrate and then converted into a lithium salt. The conductivity of this copolymeric salt was measured to be 1.4 × 10?9 S cm?1. Suspensions of the copolymeric salt were prepared in four insulating oils (silicone oil, mineral oil, trioctyl trimellitate, and dioctyl phatalate) in a series of concentrations (5–33%, m/m). The gravitational stabilities of these suspensions were determined at 20 and 80°C. The flow times of the suspensions were measured under no electric field (electric field strength = 0) and under an applied electric field (electric field strength ≠ 0), and the electrorheological activity was observed. Furthermore, the effects of the solid particle concentration, the shear rate, the electric field strength, a high temperature, and the addition of promoters on the electrorheological activities of the suspensions were investigated, and the excess shear stresses were determined. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 1822–1833, 2004  相似文献   

15.
Polymer solutions in dimethyl sulfoxide (DMSO) as a solvent, made from reversible addition fragmentation chain transfer (RAFT)‐mediated polyacrylonitrile (RAFT¥ PAN) terpolymer with molecular weight (MW) of 260,000 g/mol and dispersity (Ð) of 1.29, behave differently under applied shear stress than polymer solutions made from conventional PAN (Control PAN) with similar MW (258,000 g/mol) but Ð of 2.05 in the same solvent. The unique rheology of RAFT PAN is because of the reduced amount of high MW polymer fractions. Specifically, a 25% (w/v) polymer solution of RAFT PAN had a viscosity of 198 Pas while the equivalent control PAN polymer solution had a viscosity of 968 Pas at a shear rate of 1 s?1. Also, RAFT PAN polymer solutions had a longer Newtonian plateau than control PAN polymer solutions. This exhibits more liquid character in RAFT PAN polymer solutions than control PAN polymer solutions at same temperature and concentration. In dynamic tests, RAFT PAN polymer solutions gelled slower than their equivalent control PAN polymer solutions because of their longer polymer chain relaxation times. Slow gelling and higher liquid character in RAFT PAN polymer solutions can result in obtaining stronger and finer precursor fibers during wet spinning. Since RAFT PAN polymer solutions exhibit low viscosity and higher liquid character when compared to its equivalent control PAN at same concentration and temperature, these can allow a wider working window for wet spinning and can also allow higher solid content in the polymer solutions that remain easy to wet spin. This is expected to lead to compact and finer fibers with less voids and higher strength. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44273.  相似文献   

16.
A highly ionic conductive solid‐gel membrane based on polyacrylamide hydrogels with a K2CO3 additive was investigated. The polymer‐based gel was prepared by adding ionic species K2CO3 to a monomer solution followed by polymerization. After polymerization, the ionic species was embedded in the polymer‐based gel, where it remained. The ionic species behaved like a liquid electrolyte, whereas the polymer‐based solid‐gel membrane provided a smooth impenetrable surface that allowed for the exchange of ions. The gel membranes were obtained in the form of thin films of reasonable mechanical strength. Their ambient temperature conductivities were in the range 10?2 to 10?1 S/cm. The effect of K2CO3 concentration on the conductivity of the gels prepared was examined in the temperature range from 0 to 100°C. The microstructure and chemical composition of the gels studied were characterized by environmental scanning electron microscopy and FTIR, respectively. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2076–2081, 2004  相似文献   

17.
In this study, response surface methodology (RSM) was applied to optimize the preparation of a supramolecular gel temporary plugging agent. According to single-factor experiments, results showed that the gelling temperature was preset at 100°C, and the gelling strength reached the maximum. Three-factor RSM model prediction was carried out to explore the determination coefficient (R2) of the gelling temperature and strength and their degree of influence, and the predicted results were verified by experiments. No difference was found between the experimental results and the predicted results, indicating that this model could be used to optimize the preparation of DMF supramolecular gels. DSC, FT-IR, XRD, and SEM were used to investigate the formation mechanism of the optimized supramolecular gel temporary plugging agent (CD-Da), and its compatibility, stability, rheology, and plugging performance were evaluated. Experimental results showed that CD-Da has the characteristics of good injectability in low-permeability rock cores, strong plugging capacity, self-breaking, and less damage to the formation. Therefore, this study not only provides a stable and efficient supramolecular gel plugging agent for tight oil and gas reservoirs, but also establishes a prediction model between each component and supramolecular gel, providing a new optimization method for the preparation of supramolecular gel.  相似文献   

18.
针对东河油田油藏地层压力高、温度高和地层水矿化度高的特点,选用耐温耐盐聚合物SD7000研究并优化了适合该油藏的凝胶调驱体系,该体系配方为聚合物0.6%+高温交联剂0.3%+稳定剂0.08%+性能改进剂0.04%。评价了温度、矿化度、p H值三个因素对凝胶体系成胶性能的影响,结果表明:随着温度的升高,成胶时间变短,凝胶粘度先变大后变小;对p H值适用范围广,p H值在8~10时,成胶时间较短,凝胶粘度较大;随着钙离子浓度的增加,成胶时间变短,凝胶粘度基本不变;室内封堵实验表明,该凝胶体系封堵率达98%以上,具有一定的堵水作用。该研究对东河油田进一步提高水驱采收率提供了理论基础和技术支持,具有重要的指导意义。  相似文献   

19.
The oxidative polycondensation reaction conditions of 2‐(2‐hydroxybenzylideneamino)‐6‐phenyl‐4,5,6,7‐tetrahydrobenzo[b]thiophene‐3‐carbonitrile were examined. The magnitude of the reflectance of the polymer decreases sharply with increasing of wavelength up to 524 nm, then reflectance of the polymer increases slowly with increasing of wavelength. The refractive index values of the polymer vary from 1.474 to 2.350. The Ep and Ed values of the polymer were found to be 4.56 and 7.068 eV, respectively. Absorption coefficient K of the polymer is of the order 817.062–1434.77 m?1. Angle values of incidence and refraction of the polymer vary from 57.36 to 66.95° and from 23.05 to 32.65°, respectively. The film‐phase thickness of the polymer increases with increasing photon energy. The thickness, d, of the polymer was of the order 439.3–4184.7 Å for 190 and 1100 nm, respectively. The real part of dielectric constant of the polymer decreases slowly with increasing of frequency up to about 600 THz, then the real part of dielectric constant of the polymer increases sharply with increasing of frequency. The real and imaginary parts of dielectric constant of the polymer vary from 2.17 to 5.52 and from 5.81 × 10?5 to 3.58 × 10?4, respectively. Finally, polymer was tested for antibacterial activities against some bacteria. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
4‐tert‐Butylstyrene‐EPDM‐divinylbenzene graft polymer (PBED) was prepared by graft crosslinking polymerization in toluene using BPO as an initiator. Gel and sol of PBED were isolated by extraction with tetrahydrofuran (THF). Sol PBED can be reused as oil absorbent through cross‐linking by ultraviolet irradiation. After swelling in oil, crosslinked polymers have poor gel strength to be taken out of oil wholly at high absorbency, although they possess strong mechanical strength in their dry states. As known, composite technique is one of the useful methods for material reinforcement. Fibres, sponges and non‐woven fabrics were used as reinforcers or supporters in this work. Oil absorbency was measured by method ASTM (F726‐81) and swelling kinetics of the composite was evaluated by an experimental equation. The gel strength parameter S, the relaxation exponent n, and the fractal dimension df of polymer and some composites in pseudo‐critical gel state were determined from oscillatory shear measurements by a dynamic rheometer. Mechanical properties and the morphologies of some composites were measured with a tensile tester and scanning electron microscopy, respectively. © 2001 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号