首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Self‐emulsified water‐borne epoxy curing agent of nonionic type was prepared using triethylene tetramine (TETA) and derivative of epoxy resin as a capping agent, which was synthesized by liquid epoxy resin (E51) and polyethylene glycol (PEG), and the curing agent possessed emulsification and curing properties at the same time. The curing agent with good property of emulsifying liquid epoxy resin could be obtained under the condition of the molar ratio of PEG : E51 : TETA as 0.8 : 1 : 3.5 at 80°C for 5 h. The mean particle size of the emulsion liquid was about 220 nm with the prepared curing agent and epoxy resin at the mass ratio of 1 : 3. The structure of the emulsion‐type curing agent was confirmed by FTIR and 1H NMR spectra, and the mechanism of cured film formation was also analyzed by SEM photographs. The cured film prepared by the emulsion‐type curing agent and epoxy resin under ambient cure conditions showed good properties even at high staving temperature. This study provides useful suggestions for the application of the water‐borne epoxy resins in coating industry. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2652–2659, 2013  相似文献   

2.
We developed a conductive epoxy/amine system containing polyaniline doped with dodecylbenzenesulfonic acid (PAni.DBSA). The curing behaviors of diglycidyl ether of bisphenol A with triethylenetetramine (TETA), PAni.DBSA, and both amine compounds at different concentrations were investigated by differential scanning calorimetry (DSC). Epoxy/TETA systems containing PAni.DBSA presented two distinct exothermic peaks at 90°C due to the cure by TETA as a hardener and at 236°C related to PAni.DBSA as the curing agent. The presence of PAni.DBSA in the systems constituted by epoxy/hardener in stoichiometric proportions resulted in a decrease in the glass‐transition temperature of the epoxy matrix, as indicated by DSC and dielectric analyses. Electrical conductivity was determined in the epoxy/amine networks, with the TETA concentration kept constant and also in stoichiometric proportions of mixed hardener (TETA + PAni.DBSA) to epoxy resin. The last condition resulted in a higher electrical conductivity. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4059–4065, 2006  相似文献   

3.
An epoxy resin (E‐51)‐modified acrylic–polyurethane emulsion with triethylenetetramine (TETA) serving as the postcrosslinking agent was synthesized. The curing reaction between E‐51 and the curing agent TETA during the film‐forming course was monitored and identified by an infrared spectrophotometer. The stabilities of the single‐pack emulsion during the polymerization course as well as the storage stage were investigated. The effect of the epoxy resin was studied in terms of the dispersion size of the emulsion, the mechanical properties, as well as the swell in water and toluene of the cast film, The emulsion was shown to be stable when the epoxy content was below 20% based on the mass of the polyacrylate in the system. The tensile strength and the modulus and the water and toluene resistance were enhanced with increase of the epoxy resin. In contrast, the elongation at break was decreased. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 470–475, 2003  相似文献   

4.
采用单环氧化合物(AGE)为封端剂,环氧树脂(E44)为扩链剂,以三乙烯四胺(TETA)为原料,合成了一种具有自乳化效果的水性环氧固化剂。采用傅里叶变换红外光谱(FT-IR)对合成的水性环氧固化剂结构进行了表征,研究了合成条件对该水性固化剂成膜性质的影响。红外测试结果显示:环氧基团特征峰消失,环氧基全部参与了反应;涂膜性能测试表明:n(AGE)∶n(E44)∶n(TETA)=4.5∶1.0∶3.0时,醋酸成盐率为10%,所得涂膜外观、耐盐雾性能最佳。  相似文献   

5.
文章采用环氧树脂E-44和聚乙二醇400为原料合成改性环氧树脂,然后与三乙烯四胺反应制备水性环氧固化剂.研究表明:改性环氧树脂与三乙烯四胺质量比为2∶1,反应温度为60℃,反应时间为2h,制备的水性环氧固化剂性能优良.  相似文献   

6.
Mid- and near-infrared (IR) spectroscopy has been used to study the curing of a bisphenol-A based epoxy resin (EPON-828) with a tetrafunctional curing agent, viz., meta-phenylenediamine (MPDA). Three different cure cycles were used in the study. Primary amine functionality was observed to react relatively rapidly; none remained after curing for 2 h at 75°C. Secondary amine functionality was exhausted in epoxy rich samples subjected to the standard cure cycle (2 h at 75°C followed by 2 h at 125°C). In samples with stoichiometric amount or higher MPDA, complete reaction of secondary amine or epoxy groups was not observed. In amine-rich samples subjected to post curing (6 h at 175°C), evidence was seen for the reaction of hydroxyl and epoxy groups, resulting in a considerable increase in the crosslink density of these samples.  相似文献   

7.
谭家顶  程珏  郭晶  张军营 《化工学报》2011,62(6):1723-1729
固化剂结构对环氧树脂的固化行为和固化物性能具有重要影响,本文研究了聚醚胺(D-230)、异佛尔酮二胺(IPDA)和3,3'-二甲基-4,4'-二氨基-二环己基甲烷(DMDC) 3种胺类固化剂与实验室自制的低翻度环氧树脂A进行固化反应.通过薪度分析、红外(FTIR)光谱分析、DSC分析等手段研究了环氧树脂与固化剂反应程度...  相似文献   

8.
Diglycidyl ethers of bisphenol‐A (DGEBA) epoxy resin, filled separately with organoclay (OC) and unmodified clay (UC), were synthesized at room temperature and at high temperature (80 °C) by mechanical shear mixing. The room temperature curing (RTC) and high temperature curing (HTC) were carried out with the addition of triethylene tetramine (TETA) and diaminodiphenylmethane (DDM) curing agents respectively. The OC used was alkyl ammonium modified montmorillonite (MMT) and the UC was Na+‐MMT. X‐ray diffraction (XRD) and transmission electron microscopy (TEM) were used to study the structure and morphology of the nanocomposites. The influence of OC and UC particles on rheology and curing characteristics was studied. The rate of increase in viscosity was higher for OC‐filled resin than that of the UC‐filled resin. The curing study showed that the amine ions of the OC aided the polymerization process and favoured the curing at low temperature over the curing of unfilled epoxy resin. The tensile properties were enhanced for epoxy filled with OC particles rather than those filled with UC particles. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
Bis(4‐cyanato 3,5‐dimethylphenyl) naphthylmethane was prepared by treating CNBr with bis(4‐hydroxy 3,5‐dimethylphenyl) naphthylmethane in the presence of triethylamine at −5 to 5°C. The dicyanate was characterized by FT‐IR and NMR techniques. The prepared dicyanate was blended with commercial epoxy resin in different ratios and cured at 120°C for 1 hr, 180°C for 1 hr, and post cured at 220°C for 1 hr using diamino diphenyl methane (DDM) as curing agent. Castings of neat resin and blends were prepared and characterized by FT‐IR technique. The morphology of the blends was evaluated by SEM analysis. The composite laminates were also fabricated from the same composition using glass fiber. The mechanical properties like tensile strength, flexural strength, and fracture toughness were measured as per ASTMD 3039, D 790, and D 5528, respectively. The tensile strength increased with increase in cyanate content (3, 6, and 9%) from 322 to 355 MPa. The fracture toughness values also increased from 0.7671 kJ/m2 for neat epoxy resin to 0.8615 kJ/m2 for 9% cyanate ester epoxy modified system. The thermal properties were also studied. The 10% weight loss temperature of pure epoxy is 358°C and it increased to 398°C with incorporation of cyanate ester resin. The incorporation of cyanate ester up to 9% loading level does not affect the Tg to a very great extent. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

10.
The curing behavior of epoxy resin prepared by reacting epichlorohydrin with amine functional aniline acetaldehyde condensate (AFAAC) was investigated using AFAAC as a curing agent. The epoxy resin, {2,6‐bis‐[2‐(bis‐oxiranylmethyl‐amino)‐methylbenzyl]‐phenyl}‐bis‐oxiranylmethylamine (BPBOMA), was characterized by FTIR and 1H‐NMR spectroscopy, viscosity measurement, and determination of epoxy content. Analysis of the curing reaction was followed by differential scanning calorimetry (DSC) analysis. To investigate the curing kinetic with AFAAC, dynamic DSC scans were made at heating rates of 5, 10, 15, and 20°C/min. The activation energy and frequency factor of the AFAAC formulation were evaluated. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3168–3174, 2006  相似文献   

11.
E-44型环氧树脂固化和应用的研究   总被引:3,自引:0,他引:3  
梁璀  钟宏 《中国胶粘剂》2006,15(3):26-28,44
主要研究了金属导电浆料中常用的环氧树脂的固化。实验选用了常用的几种多乙烯多胺类及乙醇胺类固化剂,研究了固化剂用量,固化温度对E-44型环氧树脂固化的影响。实验结果表明其固化时间均随固化剂用量的增加和固化温度的升高而缩短,且固化产物性能提高。当以二乙烯三胺、三乙烯四胺、四乙烯五胺为固化剂,固化剂用量为环氧树脂量的13%左右,固化温度为75℃或115℃,所需固化时间短,在30min左右,固化产物性能良好。以乙醇胺和三乙醇胺为固化剂,固化剂用量约为环氧树脂用量的16%,固化温度为115℃,固化时间约 2.5h,所得固化产物性能良好。应用该固化条件,所制备的铜导电浆料导电性能良好,电阻率≤4.7×10-3Ω·cm。  相似文献   

12.
A thermally stable thiodiphenyl epoxy resin was modified with a dimeric fatty acid at an epoxy resin:fatty acid molar ratio of 4:1. The thermal and mechanical properties of the modified epoxy resin were studied by preparing an epoxy composition with an amine curing agent and a catalyst, followed by curing at 170 °C to produce a neat plastic epoxy resin. The tensile and impact strengths of the resin indicated improved flexibility and toughness compared to other epoxy resins. Enhanced toughness was confirmed by the increased lap shear strength in single lap joints prepared with steel substrates attached by the resin.  相似文献   

13.
Amino‐terminated and carboxyl‐containing polyurethane (PU) is prepared by an isocyanate‐terminated PU prepolymer process. Carboxyl‐containing epoxy resin is obtained from a half‐esterification of epoxy resin with maleic anhydride. These two aqueous resins are obtained after neutralization with triethylamine and dispersion into water phase, respectively. A latent curing agent (TMPTA‐AZ) is prepared by a Michael addition of aziridine with trimethylolpropane triacrylate (TMPTA). A self‐curing system of PU/epoxy hybrid is obtained from a blending of these two aqueous resins with latent curing agent. PU/epoxy hybrid is derived from two self‐curing reactions on drying. The first curing for hybridization between PU amino groups with oxirane groups of epoxy resin is via a ring‐opening reaction and the secondary curing takes place on carboxyl groups of PU/epoxy hybrid with aziridine of TMPTA‐AZ. The final properties of these dual self‐cured PU/epoxy hybrids are reported. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
Different mixture ratios of Shell Epon 828 (based on diglycidyl ether of bisphenol A, DGEBA) and Shell EPI‐CURE 3046 (based on triethylenetetramine, TETA) were evaluated under different environments of isothermal curing at 80°C in DSC, room temperature curing in air, and aging in water at 45°C. The curing reactions were monitored using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and infrared spectroscopy (IR). It was shown that the initial curing rate increased with the amount of hardener. However, the epoxy groups in samples with excess hardener were prone to reaction with primary amines located at the ends of TETA molecules, resulting in a less dense epoxy network. During aging in water at 45°C, significant effects of water on the postcure and the increased water absorption with an increase of hardener amount were observed. The DMA results show that the samples with hardener around stoichiometric composition have the greatest storage modulus while curing in air environment. However, the samples with hardener much less than stoichiometric composition have greater storage modulus under aging in water at 45°C. in water at 45°C. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 580–588, 2006  相似文献   

15.
Epoxy asphalts were prepared by mixing styrene–butadiene–styrene (SBS) modified asphalt with epoxy resin. The curing process and morphology of epoxy asphalts were characterized by infrared spectroscopy and fluorescent microscope, respectively. The effects of epoxy resin contents, ratio of curing agent to epoxy resin and curing temperature on properties of epoxy asphalt were investigated. Results indicated that epoxy resin and epoxy asphalt showed similar curing efficiency. Epoxy asphalts can be cured at 120 or 60°C and its viscosity at 120°C can meet the demands of asphalt mixture mixing and paving. The chemical reaction of epoxy resin in epoxy asphalt is slow and reaction occurs not only with the curing agent but also carboxylic acid in epoxy asphalt. The microstructure of epoxy asphalt transforms from the dispersed structure to networks structure with epoxy resin content increasing and phase transition starts when 30 wt % epoxy resin present in asphalt. The softening point and tensile strength of epoxy asphalt increased with epoxy resin contents increasing. The softening point and tensile strength of epoxy asphalt were markedly improved when epoxy resin content was more than 30 wt %, which is attributed to formation of continuous structure of epoxy resin. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
To favor the curing process of epoxy resin by cross ‐ linking and not by vitrification, the use of a tertiary amine salt is proposed. The curing reaction between diglycidyl ether of bisphenol A and tris‐(dimethylaminomethyl) phenol tri(2‐ethyl hexanoate) is studied by differential scanning calorimetry (DSC). Studies are carried out at different concentrations of amine salt: 5, 7.5, and 10 wt%. The vitrification is observed at low concentrations of the amine salt in curing experimental assessments. Furthermore, the experimental characterization of the glass transition temperature at different amine salt concentration allows inferring the polymer network connectivity. Later, the Kissinger method is used to calculate the activation energy. Finally, a reaction mechanism between the epoxy resin and the curing agent is proposed. The reaction mechanism is based on four reactions that may occur. In the most likely reaction happening in the curing, the 2‐ethyl hexanoate behaves as a catalyst through three types of esterification. The characterization and mechanism of the curing reaction of the epoxy resin DER 331 and the amine salt tris‐(dimethylaminomethyl) phenol tri(2‐ethyl hexanoate) have not been reported previously, so it is a novel support of technological relevance for the cure of epoxy community. POLYM. ENG. SCI., 2017. © 2017 Society of Plastics Engineers  相似文献   

17.
Two novel solder resist inks containing hyperbranched epoxy resin (HBPE) for thermal curing and hyperbranched epoxy acrylate resin (HBPEA) for UV‐curing were introduced in this work. Different generations of HBPE and HBPEA were synthesized and their chemical structures were determined by FT‐IR. Both curing reactions were monitored under differential scanning calorimetry (DSC) and photo‐DSC. For HBPE, the curing temperature of 7th generation was only 91°C and for HBPEA, the curing duration of 7th generation was under 10 s. The thermal stabilities of cured resins were much more stable than linear resin, as the decomposition temperatures of HBPE and HBPEA were both over 400°C. The ink containing HBPE or HBPEA jetted by piezoelectric printer showed excellent accuracy and consistency of linewidth and the morphologies of cured pattern were observed through a stereo microscope. Other performances of solder masks were tested under China Printed Circuit Association (CPCA) standard (CPCA/JPCA 4306‐2011), which satisfy all requirements of printed circuit board soldering procedure. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41805.  相似文献   

18.
A ternary blend (BEM) of benzoxazine (BA‐a), epoxy resin (E44), and imidazole (M) was prepared to study the effect of different curing cycles on curing reactions and properties of cured resins. Reactivity of two binary blends, E44 and BA‐a, with the catalyst M, was first investigated based on the curing kinetics. Results suggest that E44/M has lower reaction activation energy than BA‐a/M meaning the reaction of E44/M easily proceeds. To further figure out the sequences of the curing reactions of E44, BA‐a, and M in BEM, the curing behaviors of three BEM gels at 80, 140, and 180°C (defined as BEM‐80g, BEM‐140g, and BEM‐180g) were studied by DSC and FTIR techniques. For BEM‐80g, E44/M cured before BA‐a/M. For BEM‐180g, both curing reactions occurred simultaneously and the copolymerization of BA‐a and E44 was promoted. The crosslinked structures of cured BEM with different initial curing temperatures were strongly influenced by the reaction sequences. The Tgs, flexural properties and thermal stability of the copolymers with different curing cycles were compared. Good performance of this ternary system can be obtained by choosing suitable curing cycles. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
The modified novolac epoxy resins with furan pendant groups were prepared by novolac epoxy resin and furfuryl alcohol and then crosslinked by bifunctional maleimide via Diels–Alder (DA) chemistry to obtain the thermally reversible and self‐healing novolac epoxy resins. The as‐prepared crosslinked novolac epoxy resins were characterized by FT‐IR, NMR, TGA, and DMA. The results indicate that the novel crosslinked novolac epoxy resins present higher storage modulus (2.37 GPa at 30°C) and excellent thermal stability (348°C at 5% mass loss). Furthermore, the thermal reversible and self‐healing properties were studied in detail by DSC, SEM, thermal re‐solution, and gel–solution–gel transition experiments. All the results reveal that the crosslinked novolac epoxy resins based on DA reaction can be used as smart material for the practical application of electronic packaging and structural materials. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42167.  相似文献   

20.
针对兆瓦级风机叶片用纤维/环氧复合材料的特殊要求,开展了适用于真空辅助灌注(VARTM)工艺的环氧基体树脂的国产化研究。采用国产环氧树脂与实验室自制的稀释剂制备环氧树脂与胺类固化剂配合使用,通过示差扫描量热分析,IR光谱,力学性能,耐热性、粘度及吸水性测试等研究了环氧树脂与固化剂配比对其工艺和固化物性能的影响,获得了初始粘度低、粘度对温度不敏感、操作时间长的环氧基体树脂,其树脂浇注体的拉伸性能、弯曲性能均优于国外环氧树脂固化体系,可满足兆瓦级风机叶片用高性能复合材料的使用需求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号