首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimentally determined p,V,T data are reported for toluene, trichloromethane, dichloromethane, acetonitrile, aniline, and n-dodecane at 278, 288, 298, 313, and 323 K, except for dichloromethane, for which the highest temperature was 298 K. At each temperature, measurements were done at pressures up to about 280 MPa or (for aniline and n-dodecane) at a lower pressure slightly below the freezing pressure at the temperature of measurement. Values of the isobaric expansivity isothermal compressibility and (for toluene, trichloromethane, dichloromethane, and acetonitrile) internal pressure, derived from the p,V,T data, are presented.  相似文献   

2.
Mesurements are reported for the melting point of 1,3,5-trimethylbenzene at pressures up to 345 MPa. Self-diffusion coefficients and p, V, T data have been obtained at 298 and 313 K for pressures up to 280 MPa. Isothermal compressibilities have been calculated from the p, V, T results. The freezing pressures at 0.1 MPa correspond to previously reported values for modification III of trimethylbenzene. Equivalent hard-sphere diameters estimated from the melting point and p, V, T data are used to apply the rough hard-spheres theory to the self-diffusion data; the calculations indicate that there is random packing of the particles.On leave from Department of Chemistry, University of Auckland, Auckland, New Zealand.  相似文献   

3.
p-V T data for liquid 2-fluoroethanol (FE) have been obtained in the form of volume ratios at six temperatures (278.15, 288.15, 298.14, 313.14, 323.14, and 338.130 K) at pressures from atmospheric to 314 MPa or higher. Freezing pressures have also been measured in the temperature range from the normal freezing point to 288 K. Densities at atmospheric pressure in the same temperature range as that for thep V T data are also reported. Isothermal compressibilities, isobaric expansivities, changes in the isobaric heat capacity, and internal pressures have been calculated from the volumetric data. Representation of the volume ratios for FE, 2,2-difluoroethanol, 2,2,2-trifluoroethanol, and ethanol by a form of the modified Tait equation shows that the effect of the progressive substitution of fluorine into ethanol cannot be represented by a simple correlation.  相似文献   

4.
(p, V, T) data for mixtures of 2,2,4-trimethylpentane (TMP) and heptane have been obtained in the form of volume ratios for four temperatures in the range 298.15 to 338.15 K for pressures up to 390 MPa. The data have been represented by the Tait equation of state for the purposes of interpolation and extrapolation. The atmospheric pressure densities of both pure components and their mixtures for three temperatures have been measured and used to determine the excess molar volumes. Isothermal compressibilities have been evaluated from the volumetric data.  相似文献   

5.
p, V, T data for 2,2,4-trimethylpentane (TMP) have been obtained in the form of volume ratios for six temperatures in the range 278.15 to 338.15 K for pressures up to 280 MPa. Isothermal compressibilities, isobaric expansivities, and internal pressures have been evaluated from the volumetric data. There are strong indications that the combination of the present results with literature data at 348 and 373 K enable accurate extrapolations in the liquid range up to 473 K, and possibly to as low as 170 K, for pressures up to 980 MPa; use of only the present results with the requirement that the B coefficient of the Tait equation should become equal to the negative of the critical pressure at the critical temperature provides interpolations and extrapolations of comparable accuracy. It is suggested that 2,2,4-trimethylpentane is a suitable secondary reference material (because of its large liquid range at atmospheric pressure and the similarity of its volumetric properties to a wide range of fluids) for calibration of measuring cells used for determining volumes of fluids under pressure.  相似文献   

6.
(p, V, T) data for dichloroethane (DCE) have been obtained at 278.15, 288.15, 298.15, 313.15, 323.15, and 338.15 K for pressures either slightly below the freezing pressure or up to a maximum of 280 M Pa, together with densities at 0.1 MPa. A high-pressure self-centering falling-body viscometer method has been used to measure shear viscosities at 278.15, 288.15, 298.15, 313.15, and 323.15 K for pressures either slightly below the freezing pressure or up to a maximum of 330 MPa. Self-diffusion coefficients for DCE are reported at 278.15, 288.15, 298.15, and 313.15 K for maximum pressures up to 300 MPa. Isothermal compressibilities, isobaric expansivities, and internal pressures have been evaluated from the volumetric data. The shear viscosities and self-diffusion coefficients have been interpreted in terms of a modified rough hard-spheres theory. The anomalous behavior observed for p-V-T, shear viscosities, and self diffusion at higher temperatures and pressures is suspected to be the result of temperature and pressure altering the population ratio of the two molecular conformers, trans and gauche.  相似文献   

7.
(p, V, T) data have been obtained in the form of volume ratios relative to 0.1 MPa for benzene (298.15 to 348.15 K), 2,2,4-trimethylpentane (TMP) (313.15 to 353.15 K), and their mixtures near 0.25, 0.5, and 0.75 mole fraction of benzene (313.15 to 348.15 K) for pressures up to near the freezing pressures for benzene and the mixtures, and up to 400 MPa for TMP. Isothermal compressibilitiesκ T, isobaric expansivitie α, changes in heat capacity at constant pressureΔC p, and excess molar volumesV E have been determined from the data. Literature data at atmospheric pressure have been used to convert theΔC p toC p at several temperatures. The isobars for α over the temperature range 278.15 to 353.15 K for TMP intersect near 47 MPa and reverse their order in temperature when plotted against pressure; normalization of the α's by dividing the values at each temperature by the α at 0.1 MPa prevents both the intersection and the reversal of the order. TheV E are positive and have an unusual dependence on pressure: they increase with temperature and pressure so that the order of the curves for 0.1, 50, and 100 MPa changes in going from 313.15 to 348.15 K.  相似文献   

8.
Volume ratios (V P/V 0.1), and isothermal compressibilities calculated from them, are reported for n-pentane for seven temperatures in the range 278 to 338 K for pressures up to 280 MPa. The isobaric measurements were made with a bellows volumometer for which a novel technique had to be devised to enable measurements to be made above the normal boiling point (309.3 K). The accuracy of the volume ratios is estimated to be ±0.05 to 0.1% up to 303.15 K and ±0.1 to 0.2% from 313.15 to 338.15 K. The volume ratios are in good agreement with those calculated from recent literature data up to the maximum pressure of the latter, viz., 60 MPa.  相似文献   

9.
Isobaric thermal expansivities, αp(p, T), of seven binary mixtures ofn-hexane with l-hexanol (0.0553, 0.1088, 0.2737, 0.2983, 0.4962, 0.6036, and 0.7455 mol fraction of l-hexanol) have been measured with a pressure-controlled scanning calorimeter over the pressure range from just above the saturation pressures to 350 MPa and at temperatures from 302.6 to 503.1 K. The low-temperature isotherms of αp for particular mixtures observed with respect to the unique crossing point ofn-hexane isotherms reveal an association effect which is reduced when the temperature increases. The high-temperature isotherms of αp are very similar to the isotherms of puren-hexane, especially for lower mole fractions ofn-hexanol. No known equation of state can reproduce these properties.  相似文献   

10.
(p, V, T) data for 2,2,2-trifiuoroethanol (TFE) have been obtained in the form of volume ratios for six temperatures in the range 278.15 to 338.15 K for pressures up to 280 MPa. Isothermal compressibilities, isobaric expansivities, and internal pressures have been evaluated from the volumetric data. The compressibilities and internal pressures indicate that the behavior of TFE is closer to that of methanol than of ethanol for most of the pressure range. The use of only the present volumetric results together with the requirement that the B coefficient of the Tait equation should become equal to the negative of the critical pressure at the critical temperature provides interpolations and extrapolations up to 413 K of comparable accuracy.  相似文献   

11.
Comprehensive isochoric (p, v, T) measurements have been obtained for (0.98 CO2+0.02 CH4) at densities from 1 to 26mol·dm–3. Supplemental isochoric (p, v, T) measurements have been obtained for high-purity CO2 at densities from 12 to 24 mol·dm–3. Measurements of p(T) cover a broad range of temperature, 225 to 400 K, at pressures to 35 MPa. Comparisons have been made with independent sources and with a predictive method based on corresponding states.  相似文献   

12.
We present new data for the vapor pressure andPVT surface of 1-chloro-1,2,2,2-lelralluoroethane (designated R124 by the refrigeration industry) in the temperature range 278–423 K. ThePVT data are for the gas phase at densities up to 1.5 times the critical density. Correlating equations are given for the vapor pressures from 220 K to the critical temperature, 395.43 K, and for thePVT surface at densities up to 2 mol · L–1 (approximately 0.5 times the critical density). Second and third virial coefficients have been derived from thePVT measurements.  相似文献   

13.
The thermal conductivity λ and the heat capacity per unit volume of atactic poly(propylene) have been measured in the temperature range 90–420 K at pressures up to 1.5 GPa using the transient hot-wire method. The bulk modulus has been measured in the range 200–295 K and up to 0.7 GPa. These data were used to calculate the volume dependence of λ,g=−[∂λ/λ)/(∂V/V)] T , which yielded the following values for the glassy state (T<256 K at atmospheric pressure): 3.80±0.19 at 200 K, 3.74±0.19 at 225 K, 3.90±0.20 at 250 K, 3.77±0.19 at 271 K, and 3.73±0.19 at 297 K. The resultant value forg of the liquid state was 3.61±0.15 at 297 K. Values forg which are calculated at 295 K, using theoretical models of λ(T), agree to within 12% with the experimental value for the glassy state.  相似文献   

14.
pVT data for six compositions of 2-n-butoxyethanol (BE) and water have been obtained in the form of volume ratios at several temperatures in the range 278.15 to 353.13 K at pressures from atmospheric to 347 MPa or higher. One of the compositions is in the region where two phases exist at certain temperatures, while two compositions are near the boundary of that region. Densities at atmospheric pressure in a temperature range similar to that for the pVT data are also reported. Isothermal compressibilities, isobaric expansivities, and changes in the isobaric heat capacity have been calculated from the volumetric data for pressures up to 300 MPa. The values of normalized volume fluctuations obtained from the data at 0.1 MPa approach those of water for conditions which are close to those for phase separation in this system. Such behavior is not observed at 100 MPa, where such separation is suppressed.  相似文献   

15.
Measured and derived thermophysical properties ofm-cresol are reported for pressures up to 400 MPa at temperatures from 303 to 503 K. Isobaric thermal expansivities were measured by pressure-scanning calorimetry from 303 to 503 K and 0.1 to 400 MPa. The specific volume at 353 K was determined by pycnometry at atmospheric pressure and calculated from isothermal compressibilities measured as a funtion of pressure up to 400 MPa. Specific volumes at other temperatures and pressures are calculated from isothermal compressibilities measured as a function of pressure up to 400 MPa. Specific volumes, isothermal compressibilities, thermal coefficients of pressure, and isobaric and isochoric heat capacities at pressures up to 400 MPa are derived at several temperatures. The effects of pressure on the isobaric heat capacities ofm-cresol,n-hexane, and water are compared. The effects of self-association ofm-cresol are apparent in both the thermal expansivity and the heat capacity data.  相似文献   

16.
Measurements of (p, ρ, T) properties for compressed liquid propane have been obtained by means of a metal-bellows variable volumometer at temperatures from 340 to 400 K at pressures up to 200 MPa. The volume- fraction purity of the propane sample was 0.9999. The expanded uncertainties (k = 2) of temperature, pressure, and density measurements have been estimated to be less than 3 mK; 1.5 kPa ( MPa), 0.06% (7 MPa MPa), 0.1% (50 MPa MPa) , and 0.2% (p>150 MPa); and 0.11%, respectively. Four (p, ρ, T) measurements at the same temperatures and pressures as literature values have been conducted for comparisons. In addition, vapor pressures were measured at temperatures from 280 to 369 K. Furthermore, comparisons of available equations of state with the present measurements are reported.Paper presented at the 17th European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.  相似文献   

17.
Dynamic viscosity () and density () data are reported for methane+cis-decahydronaphthaline (decalin) binary mixtures of 25, 50, and 75 mass% (74, 90, and 96 mol%) methane at three temperatures (323, 373, and 423 K) from saturation pressure to 140 MPa. A capillary tube viscometer was used for measuring the dynamic viscosity, with the density being calculated from measurements of sample mass and volume. The overall uncertainties in the reported data are 1.0 and 0.5% for the viscosity and density measurements, respectively.  相似文献   

18.
For the investigations of the gas-liquid phase equilibria, a new apparatus has been developed capable of simultaneously determining the pressure and the liquid and vapor densities using Archimedes' principle. The relative measurement uncertainties of the liquid and vapor densities of R134a (purity, 99.999%) at 313 K are 2×10–4 and 7×10–4, respectively (95% confidence level). For the measurements in the liquid region along nine quasi-isochores at pressures up to 5 MPa, an isochoric apparatus was used. The relative measurement uncertainty ofpv/(RT) is less than 1×10–3. In addition to the investigation of the (p, v, T) properties, the temperature and pressure at the triple point and the vapor pressure between the triple point and 265 K were measured. On the basis of these data, a vapor pressure correlation has been developed that reproduces the measured vapor pressures within the uncertainty of measurement. The results of our measurements are compared with a fundamental equation for R134a, which is based on the measurements of other research groups.Paper presented at the Twelfth Symposium on Thermophysical Properties, June 19–24, 1994, Boulder, Colorado, U.S.A.  相似文献   

19.
It is shown that parameters such as optimal T c for cuprate superconductors or details of their doping curves can be organized on phenomenological rules. Accordingly, T c in a range between a kink and the optimum scale linearly with the number of effective holes h e, according to T e = h e T c e, with T c e = 600 K. Effective holes are composed of the difference between holes in the Cu—O bonds in the CuO2 planes, h p, and holes in the Cu—O bonds with the c axis or apical O, h e, according to h e = h p– hc = fh p. The deleterious effect of the apical O manifests itself in three levels, depending on the basic modes of its coordination of the CuO2 planes in zero, one, or two sheets (according to factor f = 1, 2/3, 1/2). The values of h p at T c optimum tend to rational fractions, ranging from 1/6 to 1/3, and are determined by lattice pressure. This musical or harmonic T c matrix, originating from two structurally determined factors, groups optimal T c into families. Knight shift data, establishing h p, bear out the general assumptions. Some flexibility in the range within families is observed. This flexibility indicates the operation of more complex influences from structural detail, such as the varying distance of Cu to the apical O. The existence of ranges within optimal T c families indicate a somewhat tunable rather than a strict musical T c-level scheme with measured intervals. The details of the doping curves are similarly organized. These phenomenological rules suggest the operation of bond ordering effects. Arguments for the actual nature of the bond orderings are presented in terms of local pairs of doped bonds in trijugate positions. These quantitative concepts can be expanded to other characteristic features in the doping curves of cuprates and other high-T c materials such as C or B containing systems, providing a universal frame for explaining high-T c superconductivity in bond ordering terms.  相似文献   

20.
Ba1 – x K x BiO3 (BKBO) samples with 0.35 < x < 1 were synthesized by the high pressure and high temperature technique. XRD analysis showed that the BKBO samples were single phase for the whole range of the potassium doping concentration. The change of superconducting transition temperature, T c, as well as lattice parameters have been investigated upon doping concentration. As the K doping concentration (x) increases from x = 0.37, T c decreases from 30.4 K to almost zero at x = 0.74. However, in some BKBO samples without including any barium in the starting composition (x = 1), which is denoted as KBO samples, superconductivity is observed with T c as high as 9 K with partial substitutions of Bi at the K site. Depending on the synthesis condition of the KBO samples, T c and lattice parameters were different from sample to sample. Compared with other superconducting bismuthates, the evolution of T c by potassium doping in the cubic BKBO system is discussed in terms of its electronic band structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号