首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we propose a practical design method for distributed cooperative tracking control of a class of higher-order nonlinear multi-agent systems. Dynamics of the agents (also called the nodes) are assumed to be unknown to the controller and are estimated using Neural Networks. Linearization-based robust neuro-adaptive controller driving the follower nodes to track the trajectory of the leader node is proposed. The nodes are connected through a weighted directed graph with a time-invariant topology. In addition to the fact that only few nodes have access to the leader, communication among the follower nodes is limited with some nodes having access to the information of their neighbor nodes only. Command generated by the leader node is ultimately followed by the followers with bounded synchronization error. The proposed controller is well-defined in the sense that control effort is restrained to practical limits. The closed-loop system dynamics are proved to be stable and simulation results demonstrate the effectiveness of the proposed control scheme.  相似文献   

2.
This work considers the problem of distributed consensus tracking control of second-order uncertain nonlinear systems under a directed communication graph which contains a spanning tree, where the leader node is the root. It is assumed that the followers receive only the relative positions from the neighbours. For the purpose of consensus tracking controller design, in each follower, a group of K-filters is introduced so that the necessity of velocity estimating is avoided. Then we can express each follower's tracking error dynamics as a second-order system with mismatched uncertainties. And hence we can design a robust consensus tracking controller for each follower by using the combination of the backstepping design and the disturbance observer based control using only relative position information. Theoretical analysis is performed to show that the DOBs' estimation errors can be made to decay to be sufficiently small very quickly before the system states escape from the feasible region. Then we show that all the followers' states track those of the leader with arbitrarily small ultimate error bounds. And simulation examples are provided to demonstrate the performance of the proposed method.  相似文献   

3.
卫星编队飞行的鲁棒自适应控制方法   总被引:2,自引:0,他引:2  
研究了主从式框架下编队飞行的相对控制问题.首先推导了描述主从星相对运动的完整非线性动力学模型, 利用完整模型的无摄动形式提出了最优参考轨迹生成问题,并应用高斯伪谱法将此问题转换成非线性规划问题,使其可以数值求解; 基于Lyapunov 方法设计了闭环系统的鲁棒自适应控制器,在存在未知干扰、未知主星轨道参数与控制以及未知从星质量的情况下, 仅利用相对状态测量即能够保证闭环系统的参考轨迹跟踪误差和参数估计误差全局一致最终有界,并证明了跟踪误差的最终界可以 通过选取合理的控制器参数使其任意小;最后给出了具体的仿真场景验证了本文主要结果的有效性.  相似文献   

4.
This paper presents a distributed integrated fault diagnosis and accommodation scheme for leader‐following formation control of a class of nonlinear uncertain second‐order multi‐agent systems. The fault model under consideration includes both process and actuator faults, which may evolve abruptly or incipiently. The time‐varying leader communicates with a small subset of follower agents, and each follower agent communicates to its directly connected neighbors through a bidirectional network with possibly asymmetric weights. A local fault diagnosis and accommodation component are designed for each agent in the distributed system, which consists of a fault detection and isolation module and a reconfigurable controller module comprised of a baseline controller and two adaptive fault‐tolerant controllers, activated after fault detection and after fault isolation, respectively. By using appropriately the designed Lyapunov functions, the closed‐loop stability and asymptotic convergence properties of the leader‐follower formation are rigorously established under different modes of the fault‐tolerant control system.  相似文献   

5.
This paper is concerned with the design of a distributed cooperative synchronisation controller for a class of higher-order nonlinear multi-agent systems. The objective is to achieve synchronisation and satisfy a predefined time-based performance. Dynamics of the agents (also called the nodes) are assumed to be unknown to the controller and are estimated using neural networks. The proposed robust neuro-adaptive controller drives different states of nodes systematically to synchronise with the state of the leader node within the constraints of the prescribed performance. The nodes are connected through a weighted directed graph with a time-invariant topology. Only few nodes have access to the leader. Lyapunov-based stability proofs demonstrate that the multi-agent system is uniformly ultimately bounded stable. Highly nonlinear heterogeneous networked systems with uncertain parameters and external disturbances were used to validate the robustness and performance of the new novel approach. Simulation results considered two different examples: single-input single-output and multi-input multi-output, which demonstrate the effectiveness of the proposed controller.  相似文献   

6.
A distributed controller is developed that yields cooperative containment control of a network of autonomous dynamical systems. The networked agents are modeled with uncertain nonlinear Euler–Lagrange dynamics affected by an unknown time‐varying exogenous disturbance. The developed continuous controller is robust to input disturbances and uncertain dynamics such that asymptotic convergence of the follower agents' states to the dynamic convex hull formed by the leaders' time‐varying states is achieved. Simulation results are provided to demonstrate the effectiveness of the developed controller. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, we develop a novel distributed adaptive control architecture for addressing networked multiagent systems subject to stochastic exogenous disturbances with compromised sensor and actuators. Specifically, for a class of linear leader–follower multiagent systems, we develop a new structure of the neighbourhood synchronisation error for the control design protocol of each follower. The proposed control algorithm addresses time-varying multiplicative sensor attacks on the leader state measurements. In addition, the framework addresses time-varying multiplicative actuator attacks on the followers that do not have a communication link with the leader and additive actuator attacks on all follower agents in the network. The proposed adaptive controller guarantees uniform ultimate boundedness of the state tracking error for each agent in a mean-square sense.  相似文献   

8.
曹伟  乔金杰  孙明 《控制与决策》2023,38(4):929-934
为了解决非仿射非线性多智能体系统在给定时间区间上一致性完全跟踪问题,基于迭代学习控制方法设计一种分布式一致性跟踪控制算法.首先,由引入的虚拟领导者与所有跟随者组成多智能体系统的通信拓扑,其中虚拟领导者的作用是提供期望轨迹.然后,在只有部分跟随者能够获得领导者信息的条件下,利用每个跟随者及其邻居的跟踪误差构造每个跟随者的迭代学习一致性跟踪控制器.同时采用中值定理将非仿射非线性多智能体系统转化仿射形式,并基于压缩映射方法证明所提算法的收敛性,给出算法的收敛条件.理论分析表明,在智能体的非线性函数未知情况下,利用所提算法可以使非仿射非线性多智能体系统在给定时间区间上随迭代次数增加逐次实现一致性完全跟踪.最后,通过仿真算例进一步验证所提算法的有效性.  相似文献   

9.
A virtual leader–follower formation control of a group of car-like mobile robots is addressed in this paper. First, the kinematic and dynamic models of car-like robots are transformed into a second-order leader–follower formation model which inherits all structural properties of the robot dynamic model. Then, a new observer-based proportional–integral-derivative formation controller is proposed to force that all robots construct a desired formation with respect to a predefined virtual leader. To improve the formation tracking and observation performance, the integral action is incorporated into the design of the observer–controller scheme. Adaptive robust and neural network techniques are also employed to compensate uncertain parameters, unmodeled dynamics, and external disturbances. Lyapunov’s direct method is utilized to show that the formation tracking and observation errors are semi-globally uniformly ultimately bounded. Then, the proposed controller is extended to the leader–follower formation of a team of tractor–trailer systems. Finally, simulation results illustrate the efficiency of the proposed controller.  相似文献   

10.
This paper studies synchronization to a desired trajectory for multi‐agent systems with second‐order integrator dynamics and unknown nonlinearities and disturbances. The agents can have different dynamics and the treatment is for directed graphs with fixed communication topologies. The command generator or leader node dynamics is also nonlinear and unknown. Cooperative tracking adaptive controllers are designed based on each node maintaining a neural network parametric approximator and suitably tuning it to guarantee stability and performance. A Lyapunov‐based proof shows the ultimate boundedness of the tracking error. A simulation example with nodes having second‐order Lagrangian dynamics verifies the performance of the cooperative tracking adaptive controller. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
针对有向通信拓扑结构下的航天器编队姿态协同控制问题,提出一种基于反步法的分布式姿态协同跟踪控制律.在仅有部分跟随航天器可以获取动态领航航天器信息的情况下,利用多层神经网络的逼近特性对系统的非线性不确定性进行估计.同时,考虑到航天器编队的姿态协同跟踪控制性能,构造Barrier Lyapunov函数,使得状态变量保持在预设的约束区间内,进而实现对姿态跟踪误差的约束.根据代数图论和Lyapunov理论,证明跟随航天器的姿态跟踪误差最终有界.仿真分析表明了所提出控制方法的有效性.  相似文献   

12.
This paper considers the human-in-the-loop leader-following consensus control problem of multi-agent systems (MASs) with unknown matched nonlinear functions and actuator faults. It is assumed that a human operator controls the MASs via sending the command signal to a non-autonomous leader which generates the desired trajectory. Moreover, the leader’s input is nonzero and not available to all followers. By using neural networks and fault estimators to approximate unknown nonlinear dynamics and identify the actuator faults, respectively, the neighborhood observer-based neural fault-tolerant controller with dynamic coupling gains is designed. It is proved that the state of each follower can synchronize with the leader’s state under a directed graph and all signals in the closed-loop system are guaranteed to be cooperatively uniformly ultimately bounded. Finally, simulation results are presented for verifying the effectiveness of the proposed control method.   相似文献   

13.
对主从航天器的相对姿态控制问题,考虑从航天器系统不确定因素,提出了一种基于反步法的姿态控制方法,并引入自适应控制律.该方法首先根据主从航天器的相对位置信息,解算出从航天器观测轴指向主航天器以及从航天器跟踪主航天器轨道坐标系等两种任务的期望姿态;然后基于修正罗德里格参数(MI(P)描述的从航天器姿态误差动力学模型设计了姿态控制器以及针对航天器惯量的不确定性设计了自适应控制律;并基于Lyapunov方法从理论上证明了该方法能够实现全局渐近稳定的相对姿态控制.最后将该方法应用于某编队飞行任务,仿真结果表明此控制器能够实现其编队飞行控制,具有良好的控制性能.  相似文献   

14.

In this paper, we address the fixed-time consensus tracking problem of second-order leader-follower multi-agent systems with nonlinear dynamics under directed topology. The consensus tracking algorithm consists of distributed observer and observer-based decentralized controller. The fixed-time distributed observer guarantees that each follower estimates the leader’s state under directed topology within a fixed time, where the upper bound of convergence time is independent on the initial conditions. The fixed-time decentralized controller makes each follower converge to the leader’s state in fixed time via tracking the distributed observer’s state and overcome the nonlinear dynamics without adding linear control terms. Finally, the numerical example is provided to illustrate the effectiveness of the results.

  相似文献   

15.
In this paper, the problem of prescribed performance distributed output consensus for higher-order non-affine nonlinear multi-agent systems with unknown dead-zone input is investigated. Fuzzy logical systems are utilised to identify the unknown nonlinearities. By introducing prescribed performance, the transient and steady performance of synchronisation errors are guaranteed. Based on Lyapunov stability theory and the dynamic surface control technique, a new distributed consensus algorithm for non-affine nonlinear multi-agent systems is proposed, which ensures cooperatively uniformly ultimately boundedness of all signals in the closed-loop systems and enables the output of each follower to synchronise with the leader within predefined bounded error. Finally, simulation examples are provided to demonstrate the effectiveness of the proposed control scheme.  相似文献   

16.
Abstract

This work investigates the leader–follower formation control of multiple nonholonomic mobile robots. First, the formation control problem is converted into a trajectory tracking problem and a tracking controller based on the dynamic feedback linearization technique drives each follower robot toward its corresponding reference trajectory in order to achieve the formation. The desired orientation for each follower is selected such that the nonholonomic constraint of the robot is respected, and thus the tracking of the reference trajectory for each follower is feasible. An adaptive dynamic controller that considers the actuators dynamics in the design procedure is proposed. The dynamic model of the robots includes the actuators dynamics in order to obtain the velocities as control inputs instead of torques or voltages. Using Lyapunov control theory, the tracking errors are proven to be asymptotically stable and the formation is achieved despite the uncertainty of the dynamic model parameters. In order to assess the proposed control laws, a ROS-framework is developed to conduct real experiments using four ROS-enabled mobile robots TURTLEBOTs. Moreover, the leader fault problem, which is considered as the main drawback of the leader–follower approach, is solved under ROS. An experiment is conducted where in order to overcome this problem, the desired formation and the leader role are modified dynamically during the experiment.  相似文献   

17.
This paper considers the distributed attitude tracking problem of multiple spacecraft with a leader whose control input is possibly nonzero, bounded, and not available to any follower. Based on the relative attitudes and angular velocities of neighboring spacecraft, we design a distributed discontinuous adaptive controller to each follower to guarantee that the attitude errors between the followers and the leader converge to zero for any communication graph containing a directed spanning tree with the leader as the root. To tackle the chattering effect caused by the discontinuous controller, we further propose a distributed continuous adaptive controller, under which both the attitude tracking errors and the adaptive gains are ultimately bounded.  相似文献   

18.
In this paper a control problem of leader–follower motion coordination of multiple nonholonomic mobile robots is addressed and subsequently in the proposed scheme, a reference trajectory generated based on the information from the leader is tracked by the follower robots. To alleviate demanded information on the leader, specifically to eliminate the measurement requirement or estimation of the leader's velocity and dynamics, a virtual vehicle is constructed whereby its trajectory converges to the reference trajectory of the follower. Trajectory tracking controller is then designed to allow the follower robot to track the virtual vehicle using neural network approximation, in combination with the backstepping and Lyapunov direct design technique and finally the performance and effectiveness of the controller is verified throughout the experiments.  相似文献   

19.
This paper considers the problem of unknown scalar field source seeking using multiple UAVs subject to input constraints. In this problem, each UAV can only measure the scalar field value at its current location. In order to seek the scalar field source, cooperation of multiple UAVs is carried out by adopting a leader-follower formation strategy. A least squares method is introduced to estimate the gradient of the scalar field at the leader UAV location based on the measurements of all UAVs. By using the estimated gradient, this paper proposes a guidance law for the heading of the leader UAV, and a sliding mode based heading rate controller is designed for the leader UAV to follow the desired heading angle. Furthermore, a heading rate controller is developed for each follower UAV to achieve circular formation around the leader UAV. Finally, simulation results are provided to demonstrate the effectiveness of the proposed approach.  相似文献   

20.
This paper concentrates on the leader‐follower formation control problem for marine surface vessels with unknown nonlinear dynamics and actuator faults. The unknown inertia matrix and multiplicative fault render the existing methods infeasible. To solve this problem, a low‐complexity prescribed performance controller is first proposed without the help of auxiliary neural/fuzzy systems or adaptive mechanisms. A modification technique is further adopted to relax the initial condition, such that global closed‐loop stability is guaranteed. Finally, simulation results illustrate the above theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号