首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
The number of states in a deterministic finite automaton (DFA) recognizing the language Lk, where L is regular language recognized by an n-state DFA, and k?2 is a constant, is shown to be at most n2(k?1)n and at least (n?k)2(k?1)(n?k) in the worst case, for every n>k and for every alphabet of at least six letters. Thus, the state complexity of Lk is Θ(n2(k?1)n). In the case k=3 the corresponding state complexity function for L3 is determined as 6n?384n?(n?1)2n?n with the lower bound witnessed by automata over a four-letter alphabet. The nondeterministic state complexity of Lk is demonstrated to be nk. This bound is shown to be tight over a two-letter alphabet.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号