首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
以1/4简构车辆和含阻尼简支梁桥为对象,建立可描述跳车冲击过程的车桥耦合振动分析模型。采用Newmark-β积分法获得车桥耦合系统振动响应的数值解。在不同高度、不同跳车位置以及不同车速等工况下,重点讨论跳车冲击过程中桥梁竖向动态位移响应的表现特征。数值分析表明:在文中考虑的跳车冲击工况下,桥梁竖向动态位移存在显著差异;不同跳车高度对动态位移峰值影响很小;不同跳车位置时的竖向动态位移表现各有不同,靠近跨中处,在桥梁前半跨发生跳车冲击对桥梁竖向动态位移值的影响明显大于后半跨,远离跨中处,桥梁前半跨动态位移值与后半跨相近,且最大竖向动态位移表现出滞后特征;不同车速对桥梁竖向位移值影响不同。  相似文献   

2.
为研究在役曲弦桁梁桥的动力性能和车桥振动响应,基于考虑跳车脱空时段的车桥耦合振动分析方法,进行在役曲弦桁梁桥车桥耦合振动分析。以122 m跨径彩虹桥为计算示例,建立桥梁有限元模型,分析桥梁动力特性,并计算空间车队过桥动力响应,探讨车速、车辆数量、车队分布及路面不平度等因素对在役曲弦桁梁桥动力响应的影响。结果表明:桥面系竖向刚度相对较弱,桥面局部振动易被激发;桥面竖向振动及各动力响应随着汽车数量、布载车道数量增加而显著增大;桥梁下弦跨中位移冲击系数超过规范设计值,桥面振动程度较大;车辆中、后轮易发生跳车,路面等级越高,发生脱空次数越多,在路面等级良好状态下汽车也会出现跳车现象。  相似文献   

3.
为探究轨道梁的曲线半径对跨座式单轨车桥耦合系统振动的影响,基于拉格朗日动力学方程式,在考虑柔性轨道梁的情况下,采用UM建立跨座式单轨的车桥耦合系统。研究通过设置固定曲线超高率,改变轨道梁曲线半径和行车速度来分析不同曲线半径的轨道梁对单轨车桥耦合系统的影响。分析结果发现:100 m曲线半径的轨道梁,其竖向振动位移和车体质心竖向位移对车辆速度的变化较敏感,稳定轮和导向轮在大超高率和速度变化较大时,左右侧轮胎径向力出现较大差异,将使轮胎磨损,并且车辆通过性差。曲线半径为200 m~300 m时,轨道梁和车体的振动幅值变化小,导向轮与稳定轮两侧受力均衡,10%超高设置适中。当曲线半径更大时,在固定超高情况下,车体离心力减小,车体出现内倾趋势,两侧稳定轮和导向轮的径向力出现明显差异,车辆长期行驶在此工况下也会导致两侧轮胎磨损不均。综合分析,曲线超高随曲线半径的增大而减小,可使车辆具有良好的通过性。  相似文献   

4.
考虑车轮-路面接触长度的桥头跳车动力荷载分析   总被引:1,自引:0,他引:1       下载免费PDF全文
对车辆经过桥头错台时的动力荷载进行分析,提出考虑轮胎-路面接触长度的车轮模型,并计及车轮的滚动轨迹。结合有限元动力学分析方法,对车辆上、下桥头错台时的动力荷载进行定量分析。数值仿真表明:考虑接触长度的模型更符合车轮与路面接触的实际情况,动力荷载计算值较平缓;下桥跳车时车轮脱空的临界速度计算值大大提高,10 mm错台跳车临界速度约60 km/h;跳车动力荷载与车轮悬挂方式、车速、跳车高度等有关,可由此控制轮载冲击系数;考虑车轮-路面接触长度后,桥头错台跳车的冲击系数仍较大。车辆以30 km/h以上速度通过10 mm错台时,冲击系数超过我国桥梁规范设计值,需引起重视。  相似文献   

5.
该文基于文克尔地基梁理论,利用修正的P-Y曲线法和荷载传递双曲线法,建立了桩-土非线性作用模型。采用了桩和土相对刚度来计算水平方向桩-土相互作用的初始刚度。通过Mohr-Coulomb法则得到土的极限抗力,并结合Matlock P-Y曲线法对极限抗力的表达式进行了修正,从而充分考虑了土的极限抗力的深度效应。编制了桩-土非线性梁单元有限元程序,建立了考虑非线性桩-土相互作用的车桥耦合模型。结合工程实例,分析了非线性桩-土相互作用的桥梁模型对车桥耦合响应的影响,并与墩底固结模型进行了对比。结果表明:在车桥耦合振动过程中,考虑非线性的桩-土相互作用,桥梁的横向位移幅值显著增大,竖向位移幅值增大,桥梁加速度幅值降低。此结果对处于软弱基础的高速铁路桥梁的分析和设计提供了参数和依据。  相似文献   

6.
Hermite插值在车桥耦合振动中的应用   总被引:2,自引:1,他引:2  
余华  吴定俊 《振动与冲击》2006,25(2):38-40,66
车桥耦合竖向振动分析中,轮对和与其接触的桥梁竖向位移相等,但振动速度、加速度并不相等,传统方法用轮对与桥梁接触点处桥梁振动速度和加速度代替轮对的振动速度、加速度。本文通过引进Hermite插值函数,推导出车辆以一定速度过桥时轮对竖向位移、振动速度和加速度理论值,并且轮对的竖向位移、振动速度和加速度可由轮对所在桥梁单元节点的竖向位移、振动速度和加速度求得,在有限元动力计算中易于实现。本文的算例表明在车辆低速过桥情况下,用轮对所在位置桥梁的振动速度、加速度来代替轮对的振动速度、加速度误差很小,但是车辆高速过桥时,计算结果误差较大。  相似文献   

7.
桥头引道沉降对简支梁冲击效应的影响分析   总被引:1,自引:1,他引:0       下载免费PDF全文
摘 要:针对旧桥中经常出现的桥头引道及伸缩缝破损情况,考虑接缝处沉降差引起的桥头跳车对桥梁振动的影响,提出与错台高度相关的桥头衔接状况五个等级划分标准。以我国常见的中小跨径简支梁为对象,基于五参数车辆模型的车桥耦合系统运动方程,用Newmark法进行数值求解,分析桥头引道沉降差对桥梁振动的影响。研究表明随着沉降差增加,汽车对桥梁的冲击效应明显变大,且随着车速的增大,冲击效应变大。沉降差在桥梁中产生的动力放大系数随着跨径增大而减小。另外,桥头沉降差使车辆竖向加速度瞬时变大,其绝对值随着错台高度的增加而迅速增大,该加速度变化与桥梁跨径无关。  相似文献   

8.
车辆-路面耦合振动系统模型与仿真分析   总被引:5,自引:0,他引:5  
基于二分之一的四自由度车辆振动模型,把路面简化成Kelvin地基上Euler梁,通过非线性动态轮胎力,建立车路耦合系统的分析模型及其动力平衡方程;通过轮胎和路面的位移协调条件对耦合方程进行解耦,采用模态叠加法和New-mark积分法对耦合方程组进行求解。数值分析表明:轮胎作为参振子系统对路面的影响基本可以忽略不计,考虑轮胎作为参振子系统下车体的最大竖向位移是没有考虑情况下的1.2倍左右。并对车辆运动初速度、加速度、以及路面不平顺对车体振动影响进行了分析。  相似文献   

9.
为了分析不同轨道谱对车桥动力相互作用指标的影响,以德国低干扰谱、德国高干扰谱和秦沈线轨道谱为对比对象,分析了三种轨道不平顺功率谱密度的差异,并用三角级数法获得了三种谱的时间样本。以其作为车桥系统的外加激励,计算车桥系统耦合振动响应,选用动力学指标轮重减载率、车体振动加速度、桥梁跨中动位移及桥梁跨中振动加速度进行分析,结果表明:轮重减载率大小受高低不平顺中较短波长成分的影响较明显,其规律与高低不平顺功率谱密度较短波长范围内的值相似;车体横向和竖向振动加速度则主要分别受轨道方向和高低不平顺较长波长成分影响,不平顺方向和高低功率谱之差异正好反映出了车体横向和竖向振动加速度的差异;桥梁动位移受不平顺激扰影响很小,三种轨道谱作用下的桥梁动位移非常接近;桥梁振动加速度受轨道不平顺影响较大,德国高干扰和秦沈线轨道谱明显大于德国低干扰谱作用下的桥梁振动加速度;研究结果还表明相对于桥梁竖向振动加速度,轨道不平顺对桥梁横向振动加速度的影响更显著。  相似文献   

10.
为评价在役曲弦桁梁桥加固方案,以122 m跨径彩虹桥为工程背景,采用考虑跳车脱空时段的车桥耦合振动分析方法,进行在役曲弦桁梁桥及其加固方案的车桥耦合振动分析,通过计算加固前后桥梁的频率与振型、位移及冲击系数、振动加速度峰值、舒适性等动力性能指标来评价桥梁加固效果,并探讨各评价指标的适用性。结果表明:桥梁加固方案的整体竖向和扭转刚度较原桥有明显提高,桥面竖向刚度显著提高;在汽车动力荷载作用下,桥梁加固方案的各动力响应、冲击系数和振动程度均有效降低,行人舒适性良好。容许加速度评价方法可以很好反映桥梁结构的振动程度,可用于桥梁加固方案动力性能评价;基于最大速度响应的振动感觉指标和基于加速度均方根的振级指标均能较好地评价桥梁舒适性评价;仅以冲击系数作为桥梁加固方案动力性能评价指标不合适。  相似文献   

11.
高速铁路桥梁及场地土交通振动分析   总被引:1,自引:0,他引:1  
以高速铁路32m单箱单室简支梁为例,建立了考虑土-结构动力相互作用的车-桥-墩-桩-土耦合振动系统整体三维有限元分析模型。车辆采用具有二系悬挂的多自由度车辆模型,场地土采用京沪高速铁路沿线实勘软土地基土层数据,在土体截断处采用粘弹性人工边界模拟半无限域土体,采用基于库伦接触算法的动力三维接触单元模拟轮轨接触。分析了桥墩和桩基等下部结构对车桥耦合振动的影响,以及车桥耦合振动对周围场地土振动的影响。计算结果表明车桥耦合振动受桥墩和桩基影响显著;周围场地的振动振级随着距离的增大而逐渐减小,相对水平振动而言,竖向振动衰减的更加明显;地面振动的高频分量衰减速度大于低频分量的衰减速度,远场地面振动以低频分量为主;地面振动与列车速度不是简单的线性递增关系,与上部结构桥梁的振动有关。  相似文献   

12.
考虑车辆行驶过程中车身竖向和俯仰运动耦合的问题,基于双轴四自由度车辆动力学模型,从车身响应中获取车辆过桥时的接触力,并利用接触力灵敏度和正则化方法识别桥梁结构损伤。数值模拟结果表明,在考虑路面不平度的基础上,与采用车身或车轴响应灵敏度的方法相比,基于接触力灵敏度方法的简支梁桥损伤识别精度更佳。与基于单轴车接触力灵敏度的损伤识别方法相比,本文所提出的方法在保证识别精度的同时能够明显减少迭代的次数。参数分析结果表明,结构损伤识别结果受车速、噪声和建模误差影响;该损伤识别方法也适用于连续梁桥。此外,存在合适的车桥质量比和车桥一阶频率比使得基于接触力灵敏度的结构损伤识别效果达到最优。  相似文献   

13.
研究局部地形条件对地震作用下车桥耦合系统动力响应的影响。依据黏弹性边界理论,利用ANSYS建立了可以考虑局部地形条件的三维场地模型,并通过将输入地震动转化为作用于人工边界上的等效荷载来实现波动输入,得到考虑地形影响之后的桥梁各支点地震动时程曲线。将地震激励以速度时程和位移时程形式作用到结构上,编制计算程序,进行多点地震激励作用下的车桥耦合分析。以列车通过总长480 m的实际桥梁为算例,对考虑局部地形影响的车桥耦合系统地震响应进行了仿真分析。结果表明:考虑地形影响后,地震作用下桥梁和车辆的动力响应在峰值大小和峰值出现时间上均发生了改变,且其变化规律随桥梁所处的地形类型的不同而有所差别,说明进行车桥耦合系统地震响应分析时考虑局部地形影响的必要性。  相似文献   

14.
采用梁单元离散公路梁桥,每辆汽车由多刚体模型模拟,将汽车与桥梁视为相互作用的整体系统,建立汽车-梁桥耦合时变系统的竖向振动方程。引入三次Hermite插值形函数,考虑车桥相互作用引起的梁单元形函数时变性,推导出形函数时变性在车桥耦合振动方程中的贡献值,并编制计算程序。通过具体算例分析梁单元形函数时变性对汽车-梁桥竖向振动响应影响。计算结果表明,在高速行车的车桥振动分析中,梁单元形函数时变性对公路梁桥竖向耦合振动影响显著,模拟计算时应予以考虑。  相似文献   

15.
为了科学合理地确定波形钢腹板PC简支箱梁桥的动力冲击系数,依据标准车辆的车轮与桥面的接触关系建立了车-桥系统耦合振动的动力方程。在考虑路面平整度随机激励的作用下,运用MATLAB软件编写了车桥耦合系统动力方程的求解程序,求得了波形钢腹板PC简支箱梁桥结点位移的振动响应,并进一步计算出了该桥型动力冲击系数的数值解。将求得的数值解与现行《公路桥涵设计通用规范》(JTG D60-2015)中动力冲击系数的规范值和文中提出的波形钢腹板PC简支箱梁桥基频计算公式求得桥梁基频后获取的动力冲击系数进行对比分析。结果表明:在路面平整度为中的情况下,按照文中提出的波形钢腹板PC简支箱梁桥基频计算公式在获取桥梁基频后求得的动力冲击系数,与JTG D60-2015规范中采用有限元法获取桥梁结构基频后求得的动力冲击系数以及与车桥耦合振动数值模拟获得的动力冲击系数值吻合良好,而与JTG D60-2015规范中给出的简支梁桥基频估算公式获取桥梁基频后求得的动力冲击系数有较大差异。  相似文献   

16.
本文在将轮胎与路面之间的面接触引入车-桥耦合模型的基础上,进一步考虑车辆的横向自由度,从而提出一种新的车辆模型来研究移动车载作用下的桥梁横向振动。车辆轮胎被模拟成一个三维弹簧模型,轮胎与地面的接触面模拟成长方形,通过接触面间的位移协调条件和力相互作用建立车-桥耦合振动方程。考虑影响接触面间的横向力大小的三种重要参数如:滑移角、侧偏角、轮胎的“S”形运动对耦合系统的影响;并与炉坪大桥实测数据比较,验证本文方法的正确性,并分析了接触面积、车速等对横向振动的影响。  相似文献   

17.
有限位移下张力腿平台的非线性动力响应   总被引:3,自引:0,他引:3  
曾晓辉  刘洋  沈晓鹏  吴应湘 《工程力学》2007,24(3):179-184,53
与一阶无限小位移情况不同,张力腿平台(TLP)发生有限位移时,所受外力与响应耦合,运动方程也必须在瞬时位置建立。建立了有限位移情况下张力腿平台非线性动力响应分析模型,其中考虑了由六自由度有限位移引起的多种非线性因素,如各自由度之间的耦合、瞬时位置、瞬时湿表面等;还包括自由表面效应、粘性力等因素引起的非线性。推导出张力腿平台六自由度有限运动非线性控制方程。对一个名为“ISSCTLP”的典型张力腿平台进行了数值计算,求得该平台在规则波作用下的六自由度运动响应。用退化到线性范围的解与已有解进行了对比,吻合良好。数值结果表明,综合考虑非线性因素后响应有明显改变。  相似文献   

18.
考虑桥梁结构的几何非线性因素,建立了风及列车荷载作用下大跨度桥梁的振动分析模型。以某大跨度三拱连续钢桁梁桥为例,分析了脉动风及静风荷载的不同作用效应,风速、车速变化以及结构几何非线性对桥梁振动响应的影响。结果表明:在进行车桥耦合振动分析时要综合考虑风荷载的动力作用;几何非线性因素会影响桥梁振动的极值,但不影响其变化趋势;风速及车速变化对桥梁位移极值均有较大影响。  相似文献   

19.
为研究400 km/h高速铁路桥梁的竖向刚度限值,首先,将铁路桥涵设计规范中不同车速的竖向挠度限值拟合外推,得到车速400 km/h时不同桥梁跨度的竖向挠度限值;然后,调整截面竖向惯性矩,实现不同桥梁竖向刚度,并考虑竖向温度变形影响,进行车桥耦合振动分析,得到不同桥梁竖向刚度下的车辆竖向加速度;最后,按规范要求在桥梁最不利位置加载得到桥梁竖向挠度和梁端转角,车辆竖向加速度达到限值时可获得竖向挠度限值和梁端竖向转角限值,并与规范预测值进行对比。结果表明,400 km/h高速铁路桥梁竖向挠度限值可采用现行规范拟合外推得到的挠度限值,梁端竖向转角限值可仍沿用现行规范限值。  相似文献   

20.
为探讨桥上无砟轨道损伤对列车-轨道-桥梁系统动力响应的影响规律,基于车辆-轨道-桥梁耦合动力学原理,基于ANSYS+SIMPACK联合仿真,建立了考虑墩台纵向支座刚度、轨道结构及层间接触特性的双线32m简支箱梁桥CRTSⅢ型无砟轨道空间动力学模型。研究了时速200km列车通过条件下,扣件伤损及轨道板和底座板间离缝对车桥系统动力响应的影响规律。研究表明:单个扣件失效对轨道动力响应影响有限,0.07m板缝处轮轨竖向力骤变显著,钢轨竖向位移和钢轨节点反力增大明显;扣件连续失效对系统整体影响更大,其中相邻且对侧扣件失效影响最大;自密实混凝土沿轨道板横向完全脱空后,纵向离缝长度越大,对系统动力响应的影响也越大;相邻轨道板端部自密实混凝土都沿横向完全脱空对系统动力响应影响最大,轨道结构与桥梁结构的垂向加速度、竖向位移均增幅最大,增势最快;离缝长度1.2m,轮重减载率接近限值,继续增加至1.6m时,列车将脱轨;轨道板和桥梁的竖向振动随着离缝长度的增大显著增大,振动骤增会对轨道以及桥梁的耐久性产生不利影响,建议离缝长度检修限值可设为1.2m,并应重点关注轨道板端部自密实混凝土界面脱空情况。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号