首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conventional displacement discontinuity method is extended to study a vertical crack under electrically impermeable condition, running parallel to the poling direction and normal to the plane of isotropy in three-dimensional transversely isotropic piezoelectric media. The extended Green's functions specifically for extended point displacement discontinuities are derived based on the Green's functions of extended point forces and the Somigliana identity. The hyper-singular displacement discontinuity boundary integral equations are also derived. The asymptotical behavior near the crack tips along the crack front is studied and the ordinary 1/2 singularity is obtained at the tips. The extended field intensity factors are expressed in terms of the extended displacement discontinuity on crack faces. Numerical results on the extended field intensity factors for a vertical square crack are presented using the proposed extended displacement discontinuity method.  相似文献   

2.
Making use of the Displacement Discontinuity Boundary Integral Equation Method (DDBIEM), the dimension of the plastic zone at the tip of a penny-shaped crack in a three-dimensional elastic medium is determined by the application of the Dugdale model; Furthermore, the solutions for a penny-shaped crack in three-dimensional piezoelectric media are obtained by the use of the Dugdale-like model proposed by Gao et al.[Gao H, Zhang T, Tong P. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 1997;45:491–510], in which the electrical polarization is assumed to reach a saturation limit in a thin annular region in front of a crack while the mechanical stresses have the ordinary singularity.  相似文献   

3.
The present paper presents a boundary element analysis of penny-shaped crack problems in two joined transversely isotropic solids. The boundary element analysis is carried out by incorporating the fundamental singular solution for a concentrated point load in a transversely isotropic bi-material solid of infinite space into the conventional displacement boundary integral equations. The conventional multi-region method is used to analyze the crack problems. The traction-singular elements are employed to capture the singularity around the crack front. The values of the stress intensity factors are obtained by using crack opening displacements. The numerical scheme results are verified with the closed-form solutions available in the literature for a penny-shaped crack parallel to the plane of the isotropy of a homogeneous and transversely isotropic solid of infinite extent. The new problem of a penny-shaped crack perpendicular to the interface of a transversely isotropic bi-material solid is then examined in detail. The crack surfaces are subject to the three normal tractions and the uniform shear traction. The associated stress intensity factor values are obtained and analyzed. The present results can be used for the prediction of the stability of composite structures and the hydraulic fracturing in deep rock strata and reservoir engineering.  相似文献   

4.
A boundary integral equation method is applied to the solutions of three dimensional piezoelectric solids. Based on the reciprocal relations, a pair of boundary integral formulae were formulated for evaluation of the fields in the medium. The Green's functions and their first partial derivatives employed in the formulations are evaluated numerically from the line integral solutions derived from the Fourier transform. By constructing some augmented matrices, we show that the topic can be treated systematically as that in the uncoupled elastic and dielectric problems. In illustration, we present results for the internal fields of a spherical cavity in an infinite piezoelectric medium loaded by a uniform traction on its boundary. Two piezoelectric ceramics, PZT-6B and gallium arsenide, are considered in the calculations. Some comparisons are made with solutions of purely elastic solids and with our recent calculations based on the finite element method.This work was supported by the National Science Council, Taiwan, under contract NSC 83-0410-E006-041.  相似文献   

5.
A path-independent integral which is denoted by je, is introduced for the 2-dimensional crack problems in the homogeneous isotropic conductor in which the steady current flows. By utilizing the je-integral the distributions of the electric potential, current density and the Joule heating rate near the crack tip are derived. It is shown that the je-integral provides a parameter which dominates the distributions of the electric potential and current density near the crack tip as the square of the amplitude.  相似文献   

6.
We present a boundary integral formulation for anisotropic interface crack problems based on an exact Green's function. The fundamental displacement and traction solutions needed for the boundary integral equations are obtained from the Green's function. The traction-free boundary conditions on the crack faces are satisfied exactly with the Green's function so no discretization of the crack surfaces is necessary. The analytic forms of the interface crack displacement and stress fields are contained in the exact Green's function thereby offering advantage over modeling strategies for the crack. The Green's function contains both the inverse square root and oscillatory singularities associated with the elastic, anisotropic interface crack problem. The integral equations for a boundary element analysis are presented and an example problem given for interface cracking in a copper-nickel bimaterial.  相似文献   

7.
A versatile method is presented to derive the extended displacement discontinuity Green's functions or fundamental solutions by using the integral equation method and the Green's functions of the extended point forces. In particular, the three-dimensional (3D) transversely isotropic magneto-electro-elastic problem is used to demonstrate the method. On this condition, the extended displacement discontinuities include the elastic displacement discontinuities, the electric potential discontinuity and the magnetic potential discontinuity, while the extended forces include the point forces, the point electric charge and the point electric current. Based on the obtained Green's functions, the extended Crouch fundamental solutions are derived and an extended displacement discontinuity method is developed for analysis of cracks in 3D magneto-electro-elastic media. The extended intensity factors of two coplanar and parallel rectangular cracks are calculated under impermeable boundary condition to illustrate the application, accuracy and efficiency of the proposed method.  相似文献   

8.
This paper presents Green's functions for transversely isotropic piezoelectric and layered half-spaces. The surface of the half-space can be under general boundary conditions and a point source (point-force/point-charge) can be applied to the layered structure at any location. The Green's functions are obtained in terms of two systems of vector functions, combined with the propagator-matrix method. The most noticeable feature is that the homogeneous solution and propagator matrix are independent of the choice of the system of vector functions, and can therefore be treated in a unified manner. Since the physical-domain Green's functions involve improper integrals of Bessel functions, an adaptive Gauss-quadrature approach is applied to accelerate the convergence of the numerical integral. Typical numerical examples are presented for four different half-space models, and for both the spring-like and general traction-free boundary conditions. While the four half-space models are used to illustrate the effect of material stacking sequence and anisotropy, the spring-like boundary condition is chosen to show the effect of the spring constant on the Green's function solutions. In particular, it is observed that, when the spring constant is relatively large, the response curve can be completely different to that when it is small or when it is equal to zero, with the latter corresponding to the traction-free boundary condition.  相似文献   

9.
A numerical procedure is proposed to compute the T-stress for two-dimensional cracks in general anisotropic elastic media. T-stress is determined from the sum of crack-face displacements which are computed via an integral equation of the boundary data. To smooth out the data in order to perform accurately numerical differentiation, the sum of crack-face displacement is established in a weak-form integral equation in which the integration domain is simply the crack-tip element. This weak-form integral equation is then solved numerically using standard Galerkin approximation to obtain the nodal values of the sum of crack-face displacements. The procedure is incorporated in a weakly-singular symmetric Galerkin boundary element method in which all integral equations for the traction and displacement on the boundary of the domain and on the crack faces include (at most) weakly-singular kernels. To examine the accuracy and efficiency of the developed method, various numerical examples for cracks in infinite and finite domains are treated. It is shown that highly accurate results are obtained using relatively coarse meshes.  相似文献   

10.
This paper provides a numerical solution for an infinite plate containing two dissimilar elastic inclusions, which is based on complex variable boundary integral equation (CVBIE). The original problem is decomposed into two problems. One is an interior boundary value problem (BVP) for two elastic inclusions, while other is an exterior BVP for the matrix with notches. After performing discretization for the coupled boundary integral equations (BIEs), a system of algebraic equations is formulated. The inverse matrix technique is suggested to solve the relevant algebraic equations, which can avoid using the assembling of some matrices. Several numerical examples are carried out to prove the efficiency of suggested method and the hoop stress along the interface boundary is evaluated.  相似文献   

11.
The analytical solution for the linear elastic, axisymmetric problem of inner and outer edge cracks in a transversely isotropic infinitely long hollow cylinder is considered. The z = 0 plane on which the crack lies is a plane of symmetry. The loading is uniform crack surface pressure. The mixed boundary value problem is reduced to a singular integral equation where the unknown is the derivative of the crack surface displacement. An asymptotic analysis is done to derive the generalized Cauchy kernel associated with edge cracks. It is shown that the stress intensity factor is a function of three material parameters. The singular integral equation is solved numerically. Stress intensity factors are presented for various values of material and geometric parameters.  相似文献   

12.
The purpose of this paper is to consider the concept of a ring of sources or forces using the integral transform techniques to derive the axisymmetric fundamental solution for nonhomogeneous transversely isotropic elastic media. Firstly, the formulation of the problem in homogeneous media to derive the fundamental solutions is shown. In the case of a nonhomogeneous medium, the shear modulus of the material varies with the z-coordinate exponentially.  相似文献   

13.
A weakly singular, symmetric Galerkin boundary element method (SGBEM) is established to compute stress and electric intensity factors for isolated cracks in three-dimensional, generally anisotropic, piezoelectric media. The method is based upon a weak-form integral equation, for the surface traction and the surface electric charge, which is established by means of a systematic regularization procedure; the integral equation is in a symmetric form and is completely regularized in the sense that its integrand contains only weakly singular kernels of (hence allowing continuous interpolations to be employed in the numerical approximation). The weakly singular kernels which appear in the weak-form integral equation are expressed explicitly, for general anisotropy, in terms of a line integral over a unit circle. In the numerical implementation, a special crack-tip element is adopted to discretize the region near the crack front while the remainder of the crack surface is discretized by standard continuous elements. The special crack-tip element allows the relative crack-face displacement and electric potential in the vicinity of the crack front to be captured to high accuracy (even with relatively large elements), and it has the important feature that the mixed-mode intensity factors can be directly and independently extracted from the crack front nodal data. To enhance the computational efficiency of the method, special integration quadratures are adopted to treat both singular and nearly singular integrals, and an interpolation strategy is developed to approximate the weakly singular kernels. As demonstrated by various numerical examples for both planar and non-planar fractures, the method gives rise to highly accurate intensity factors with only a weak dependence on mesh refinement.  相似文献   

14.
This note contains some further discussion of the problem of a penny-shaped crack in a transversely isotropic solid. For uniform applied stress at infinity, the problem is solved using Eshelby's method. Particular attention is given to the interaction energy and the crack opening displacements. The results are given in a form which is convenient in the study of cracked solids.  相似文献   

15.
This paper describes the method of fundamental solutions (MFS) to solve three-dimensional elastostatic problems of transversely isotropic solids. The desired solution is represented by a series of closed-form fundamental solutions, which are the displacement fields due to concentrated point forces acting on the transversely isotropic material. To obtain the unknown intensities of the fundamental solutions, the source points are properly located outside the computational domain and the boundary conditions are then collocated. Furthermore, the closed-form traction fields corresponding to the previously published point force solutions are reviewed and addressed explicitly in suitable forms for numerical implementations. Three numerical experiments including Dirichlet, Robin, and peanut-shaped-domain problems are carried out to validate the proposed method. It is found that the method performs well for all the three cases. Furthermore, a rescaling method is introduced to improve the accuracy of Robin problem with noisy boundary data. In the spirits of MFS, the present meshless method is free from numerical integrations as well as singularities.  相似文献   

16.
Z.-C. Ou  Y.-H. Chen 《Acta Mechanica》2003,162(1-4):213-219
Summary.  Explicit expressions of eigenvalues and associated eigenvectors in Stroh's theory [1] for transversely isotropic piezoelectric materials under generalized plane deformation are presented. It is shown that the practical calculation for some piezoelectric ceramics yields all eigenvalues which are distinct from each other for generalized x-z plane deformation, where z is the poling axis of a transversely isotropic piezoelectric material. Some numerical results based on the explicit expressions are given, and the orthogonality and closed relation between matrices A and B in Stroh's theory [2], [3] for piezoelectric material are verified numerically. Received May 8, 2002; revised December 14, 2002 Published online: May 20, 2003 The paper is supported by the doctorate foundation of Xi'an Jiaotong University. The science foundation of the Shaanxi Province of China is appreciated, too.  相似文献   

17.
The features of an advanced numerical solution capability for boundary value problems of linear, homogeneous, isotropic, steady-state thermoelasticity theory are outlined. The influence on the stress field of thermal gradient, or comparable mechanical body force, is shown to depend on surface integrals only. Hence discretization for numerical purposes is confined to body surfaces. Several problems are solved, and verification of numerical procedures is obtained by comparison with accepted results from the literature.  相似文献   

18.
This paper deals with some basic linear elastic fracture problems for an arbitrary-shaped planar crack in a three-dimensional infinite transversely isotropic piezoelectric media. The finite-part integral concept is used to derive hypersingular integral equations for the crack from the point force and charge solutions with distinct eigenvalues s i(i=1,2,3) of an infinite transversely isotropic piezoelectric media. Investigations on the singularities and the singular stress fields and electric displacement fields in the vicinity of the crack are made by the dominant-part analysis of the two-dimensional integrals. Thereafter the stress and electric displacement intensity factor K-fields and the energy release rate G are exactly obtained by using the definitions of stress and electric displacement intensity factors and the principle of virtual work, respectively. The hypersingular integral equations under axially symmetric mechanical and electric loadings are solved analytically for the case of a penny-shaped crack.  相似文献   

19.
In this paper, a general boundary element approach for three-dimensional dynamic crack problems in transversely isotropic bodies is presented for the first time. Quarter-point and singular quarter-point elements are implemented in a quadratic isoparametric element context. The procedure is based on the subdomain technique, the displacement integral representation for elastodynamic problems and the expressions of the time-harmonic point load fundamental solution for transversely isotropic media. Numerical results corresponding to cracks under the effects of impinging waves are presented. The accuracy of the present approach for the analysis of dynamic fracture mechanics problems in transversely isotropic solids is shown by comparison of the obtained results with existing solutions.  相似文献   

20.
The transient elastodynamic response of a transversely isotropic material containing a semi-infinite crack under uniform impact loading on the faces is examined. The crack lies in a principle plane of the material, but the crack front does not coincide with a principle direction. Rather, the crack front is at an angle to a principle direction and thus the problem becomes more three-dimensional in nature. Three loading modes are considered, i.e., opening, in-plane shear and anti-plane shear. The solutions for the stress intensity factor history around the crack tip are found. Laplace and Fourier transforms together with the Wiener-Hopf technique are employed to solve the equations of motion directly. The asymptotic expression of stress near the crack tip leads to a closed-form solution for the dynamic stress intensity factor for each loading mode. It is found that the stress intensity factors are proportional to the square root of time as expected. Results given here converge to known solutions in transversely isotropic materials with a crack oriented along a principle direction and isotropic materials as special cases. The results of this analysis are used to find approximate strain energy release rates for dynamically loaded penny shaped cracks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号