首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The effect of eight strains of lactic acid bacteria (two strains of Enterococcus, one strain of Lactobacillus, and five strains of Lactococcus, which produce enterocin AS-48, enterocin 607, nisin A, nisin Z, plantaricin 684, lacticin 481, or nisin Z plus lacticin 481) on acid production and proteolytic activity of Lactobacillus helveticus LH 92 (a highly peptidolytic strain used as an adjunct in cheese making) was evaluated in mixed cultures in milk. Acid production by mixed cultures depended on the sensitivity of L. helveticus LH 92 to the different bacteriocins and on the acidification rates of bacteriocin-producing strains. Proteolysis values of mixed cultures were, in all cases, lower than those of L. helveticus LH 92 single culture (control). Cell-free aminopeptidase activity values after 9 h of incubation did not increase in the presence of enterocin producers or the nisin A producer, whereas in the presence of the nisin Z producer, cell-free aminopeptidase activity was, at most, 3.7-fold greater than the control value. In mixed cultures with the plantaricin producer, a progressive lysis of L. helveticus LH 92 took place, with cell-free aminopeptidase activity values after 9 h being, at most, 10.5-fold greater than the control value. The highest cell-free aminopeptidase activity values after 9 h were recorded in the presence of lacticin 481 producers, with the values being, at most, 25.1-fold greater than the control value. L. helveticus LH 92 was extremely sensitive to small variations in the concentration of the inoculum of the nisin Z plus lacticin 481 producer, with there being a narrow optimum for the release of intracellular aminopeptidases. Plantaricin and lacticin 481 producers seemed the most promising strains to be combined with L. helveticus LH 92 as lactic cultures for cheese manufacture,because of the accelerated release of intracellular aminopeptidases.  相似文献   

3.
The aim of this study was to survey the presence of Staphylococcus aureus and Listeria monocytogenes during the cheese making process in small-scale raw milk cheese production in Norway.The prevalence of S. aureus in bovine and caprine raw milk samples was 47.3% and 98.8%, respectively. An increase in contamination during the first 2-3 h resulted in a 73.6% prevalence of contamination in the bovine curd, and 23 out of 38 S. aureus-negative bovine milk samples gave rise to S. aureus-positive curds. The highest contamination levels of S. aureus were reached in both caprine and bovine cheese after 5-6 h (after the first pressing). There was no contamination of L. monocytogenes in caprine cheeses and only one (1.4%) contaminated bovine cheese.This work has increased our knowledge about S. aureus and L. monocytogenes contamination during the process of raw milk cheese production and gives an account of the hygiene status during the manufacture of Norwegian raw milk cheeses.  相似文献   

4.
The behavior of Listeria monocytogenes in pasteurized milk during fermentation with starter and nonstarter lactic acid bacteria was investigated. Pasteurized milk was co-inoculated with approximately 10(4) CFU/ml of L. monocytogenes and 10(6) CFU/ml of Lactococcus lactis, Lactococcus cremoris, Lactobacillus plantarum, Lactobacillus bulgaricus, or Streptococcus thermophilus. Inoculated milks were incubated at 30 degrees C or 37 degrees C for 24 to 72 h. Listeria monocytogenes survived and also grew to some extent during incubation in the presence of all starter cultures; however, inhibition ranged from 83 to 100% based on maximum cell populations. During incubation with L. bulgaricus and L. plantarum, L. monocytogenes was completely inactivated after 20 h and 64 h of incubation at 37 degrees C and 30 degrees C, respectively. The pH of the fermenting milks declined steadily throughout the fermentation periods and was approximately 4.2 at the conclusion of the experimental period regardless both of the starter culture and pathogen combination or the temperature of incubation.  相似文献   

5.
Soft lactic cheeses were manufactured with raw goat milk inoculated with Listeria monocytogenes. The physico-chemical and microbiological characteristics of curds and cheeses were determined after each processing step as well as during ripening and refrigerated storage. The fate of Listeria monocytogenes was evaluated by enumeration on PALCAM agar and by a qualitative detection after a double selective enrichment procedure. The results showed that the physico-chemical and microbiological characteristics of lactic cheeses caused a decrease of Listeria monocytogenes counts. However, this decrease did not lead to the complete disappearance of the pathogen and Listeria monocytogenes was able to survive in soft lactic cheeses made with raw goat milk.  相似文献   

6.
以单增李斯特氏菌为指示菌,通过牛津杯双层平板法对从发酵面团样品中分离出的54株乳酸菌进行抑菌试验。在排除有机酸,过氧化氢的干扰后,其中1株乳酸菌的发酵上清液对单增李斯特氏菌仍然表现出明显的抑制作用。其抑菌活性在酸性条件下较强,在加入蛋白酶K和胰蛋白酶以及100℃以上热处理时明显下降甚至消失,说明其代谢产物中含有蛋白质类抑菌物质,是一类细菌素。经Trcine-SDS-PAGE试验分析该细菌素分子质量为25 kDa;经过生理生化试验及16S rDNA序列同源性分析,该菌被鉴定为Lactobacillus curvatus。  相似文献   

7.
The lactic acid bacteria contributing to Lighvan cheese ripening during the different stages of production were investigated. Isolated strains from different culture media were identified phenotypically to species and subspecies level. In total, 413 strains were isolated from raw milk, 1-day-old cheese and fully ripened cheese. The most abundant species belonged to Enterococcus faecium (87 isolates), Lactococcus lactis ssp. lactis (68 isolates), Enterococcus faecalis (55 isolates) and Lactobacillus plantarum (48 isolates). E. faecium, Lc. lactis and Lb. plantarum were the predominantly isolated strains from ripened cheese. Therefore, they may contribute considerably to the aroma and flavour development of Lighvan cheese.  相似文献   

8.
Lactic acid bacteria (LAB) are currently used by food industries because of their ability to produce metabolites with antimicrobial activity against gram-positive pathogens and spoilage microorganisms. The objectives of this study were to identify naturally occurring bacteriocinogenic or bacteriocinogenic-like LAB in raw milk and soft cheese and to detect the presence of nisin-coding genes in cultures identified as Lactococcus lactis. Lactic acid bacteria cultures were isolated from 389 raw milk and soft cheese samples and were later characterized for the production of antimicrobial substances against Listeria monocytogenes. Of these, 58 (14.9%) LAB cultures were identified as antagonistic; the nature of this antagonistic activity was then characterized via enzymatic tests to confirm the proteinaceous nature of the antimicrobial substances. In addition, 20 of these antagonistic cultures were selected and submitted to genetic sequencing; they were identified as Lactobacillus plantarum (n = 2) and Lactococcus lactis ssp. lactis (n = 18). Nisin genes were identified by polymerase chain reaction in 7 of these cultures. The identified bacteriocinogenic and bacteriocinogenic-like cultures were highly variable concerning the production and activity of antimicrobial substances, even when they were genetically similar. The obtained results indicated the need for molecular and phenotypic methodologies to properly characterize bacteriocinogenic LAB, as well as the potential use of these cultures as tools to provide food safety.  相似文献   

9.
Spray-drying of bacteriocin-producing lactic acid bacteria.   总被引:1,自引:0,他引:1  
Cell survival, cellular damage, and antagonistic activity were investigated after spray-drying of four bacteriocin-producing strains of lactic acid bacteria: Lactococcus lactis subsp. lactis 140, isolated from natural whey culture and producing a narrow-inhibitory spectrum bacteriocin); L. lactis subsp. lactis G35, isolated from pizza dough and producing nisin; Lactobacillus curvatus 32Y and Lactobacillus sp. 8Z, isolated from dry sausages. Trials were performed with bacteria suspended in skimmed milk or directly grown in whey. Three air temperatures at the inlet of the drier (160, 180, and 200 degrees C) and three flow rates (10, 13, and 17 ml/min) were assayed. Cell viability and bacteriocin activity of the dried materials were determined immediately after the process and after 5, 15, 30, and 60 days of storage at 4 degrees C. There was no significant difference between the two feeding suspensions in cell survival, always decreasing with the increase of inlet-air temperature. No loss of bacteriocin activity was detected in reconstituted powders, nor was any loss of ability to produce bacteriocin found after drying. Investigations of sensitivity to NaCl revealed only temporary damage to dried bacteria. During storage for 2 months at 4 degrees C, all samples, but mainly the lactococcal strains, displayed a gradual decrease in cell survival. Bacteriocin activity remained at the same level, allowing powders to be considered as effective biopreservatives.  相似文献   

10.
Two cheese-making trials were conducted, each involving four cheeses, two made from raw milk (R1, R8) and two from pasteurised milk (P1, P8), and ripened at 1°C (R1, P1) or 8°C (R8, P8). The 1-day-old R1 and R8 cheese in trials 1 and 2 contained ∼104 non-starter lactic acid bacteria (NSLAB) g−1. In trial 1, no NSLAB were detected in 1-day-old P1 and P8 cheeses while those in trial 2 contained 102 cfu g−1. In both trials, the maximum differences between the number of NSLAB in the cheeses ripened at 1 or 8°C were observed at 4 months, when the number of NSLAB in cheeses ripened at 8°C were 3 log cycles higher than in those ripened at 1°C. At the end of ripening (6-months), the number of NSLAB in P8 and R8 were ∼2 log cycles higher than in P1 and R1 cheeses, respectively. Primary proteolysis in the cheeses was markedly affected by ripening temperature, but not by pasteurisation of the cheese milk. Urea-polyacyrlamide gel electrophoretograms and reverse-phase (RP)-HPLC of the water-soluble fraction showed differences between cheeses made from raw or pasteurised milk and between cheeses ripened at 1 or 8°C. The concentration of amino acids and fatty acids were in the order R8>P8>R1>P1. Commercial graders awarded highest flavour scores to the R1 cheeses during gradings at 4, 5 and 6 months. A sensory panel found that most flavour and aroma attributes and maturity were in the order of R8>P8>R1=P1. The results of this study suggest that NSLAB play an important role in the development of flavour in Cheddar cheese by contributing to the production of amino acids and fatty acids.  相似文献   

11.
采用琼脂平板扩散实验,从湖南传统发酵腊肉和香肠中筛选出3株对单核增生李斯特菌(Listeria monocytogene54002)具有明显抑制作用的乳酸菌,排除酸和过氧化氢的干扰后,仍具有抑菌活性,而用胰蛋白酶和胃蛋白酶处理以后,其抑菌活性消失,因此确定该抑菌物质为蛋白质类物质,即细菌素。三株菌所产细菌素具有一定热稳定性,在pH5~10之间仍具有一定的抑菌活性。通过生理生化实验和16S rRNA基因序列分析对3株菌进行了鉴定。PCR扩增得到1600bp左右的16S rRNA基因序列,将序列通过BLAST软件在NCBI网站上进行同源性对比,并通过MEGA5.0软件绘制系统发育树。结果显示3株菌的16S rRNA序列和数据库中的屎肠球菌的序列同源性均在99%以上,这与生理生化实验初步鉴定结果一致。   相似文献   

12.
以豆浆为发酵底物,对8株乳酸菌的凝乳性能进行了研究,检测了凝乳的黏度、酸度、双乙酰、胞外多糖和pH值为4.6可溶性氮含量,采用混合权重法对结果进行统计分析,得出凝乳性能的排序结果为Lb2→La→St1→Lb1→Sl→St2→Sc→Lc。此外,对8株乳酸菌的α-低聚半乳糖代谢能力进行了研究,乳杆菌代谢能力显著高于乳球菌。最后,优选出适于大豆干酪加工的乳酸菌发酵剂为St1和La。  相似文献   

13.
产细菌素乳酸菌的筛选及鉴定   总被引:1,自引:0,他引:1  
从传统发酵制品中分离筛选到50株乳酸菌,通过琼脂扩散法从中筛选出5株对指示菌具有明显抑菌作用的菌株,通过排除酸和过氧化氢的作用后,其中一株菌仍具有一定的抑菌活性.用胰蛋白酶对其发酵液进行处理后.活性下降很大,说明代谢产物中含有蛋白性质的抑菌物质,可能是细菌素.对此菌株进行鉴定,初步认为是戊糖乳杆菌,并对其生长能力和产酸能力进行了测定.  相似文献   

14.
15.
A total of 79 bacterial strains, previously isolated from donkey milk, were screened for their antimicrobial activity against several spoilage and foodborne pathogenic bacteria. Amongst them, 3 strains belonging to Enterococcus faecium displayed antimicrobial activity against Listeria monocytogenes, Staphylococcus aureus and Bacillus cereus. Mass spectrometry analysis demonstrated that all enterococci used in this study produced peptides with masses consistent with those for enterocins A and B. The cell-free supernatants of the identified bacteriocin-producing enterococci were equally active over a wide range of pH and heat treatments making them excellent candidates for potential applications in bio-preservation. Bacteriocins produced by these strains were tested for their capability to control post-processing contamination and growth of L. monocytogenes during refrigerated storage of artificially contaminated fresh whey cheese. One strain was considered bactericidal while the other two were classified as bacteriostatic.  相似文献   

16.
研究了弯曲乳酸杆菌和乳酸片球菌对低温冷藏牛肉中李斯特菌的混合协同抑制作用。李斯特菌、弯曲乳酸杆菌(产细菌素sakacinP)和乳酸片球菌(产生片球菌素AcH),单独或混合接种于冷鲜牛肉中,4℃下储藏6周。单一接种弯曲乳酸杆菌或乳酸片球菌均能对李斯特菌起到抑制作用,但一周后均出现李斯特菌再次污染现象;然而混合接种弯曲乳酸杆菌和乳酸片球菌能将对李斯特菌的抑制期延长至第六周,之后才出现反弹现象,且李斯特菌数低于10cfu·g-1。因此,应用组合产细菌素菌株能有效延长对李斯特菌的抑制作用。  相似文献   

17.
To evaluate the efficacy of lactic acid bacteria (LAB) to improve the hygienic safety of a traditional raw milk cheese, the raw ewes' milk protected denomination of origin (PDO) Pecorino Siciliano cheese was used as a model system. Different Pecorino Siciliano curds and cheeses were used as sources of autochthonous LAB subsequently used as starter and non-starter LAB. These were screened for their acidification capacity and autolysis. Starter LAB showing the best performance were genotypically differentiated and identified: two strains of Lactococcus lactis subsp. lactis were selected. From the non-starter LAB, Enterococcus faecalis, Lactococcus garvieae and Streptococcus macedonicus strains were selected. The five cultures were used in individual or dual inocula to produce experimental cheeses in a dairy factory for which production was characterised by high numbers of undesirable bacteria. At 5-month of ripening, the experimental cheeses produced with LAB were characterised by undetectable levels of enterobacteria and pseudomonads and the typical sensory attributes.  相似文献   

18.
非发酵剂乳酸菌(NSLAB)是天然存在于原料乳中的一类独特的微生物,一般在干酪成熟过程中发挥作用;着重阐述了非发酵剂乳酸菌(NSLAB)的定义、分类状况,分析其对干酪风味形成、质构变化等的影响,提出了研究非发酵剂乳酸菌应注意的问题,为研究干酪的风味多样性提供科学思路。  相似文献   

19.
Indigenous lactic acid bacteria in ewe's milk and artisanal cheese were studied in four samples of fresh raw milk and four 1-month-old cheeses from the provinces of northwest Argentina. Mean growth counts on M17, MRS, and MSE agar media did not show significant differences (P < 0.05) in raw milk and cheeses. Isolates of lactic acid bacteria from milk were identified as Enterococcus (48%), lactococci (14%), leuconostocs (8%), and lactobacilli (30%). All lactococci were identified as Lactococcus lactis (subsp. lactis and subsp. cremoris). Lactobacilli were identified as Lactobacillus plantarum (92%) and Lactobacillus acidophilus (8%). Enterococci (59%) and lactobacilli (41%) were isolated from cheeses. L. plantarum (93%), L. acidophilus (5%), and Lactobacillus casei (2%) were most frequently isolated. L. lactis subsp. lactis biovar diacetylactis strains were considered as fast acid producers. L. lactis subsp. cremoris strains were slow acid producers. L. plantarum and L. casei strains identified from the cheeses showed slow acid production. The majority of the lactobacilli and Lactococcus lactis strains utilized citrate and produced diacetyl and acetoin in milk. Enzyme activities (API-ZYM tests) of lactococci were low, but activities of L. plantarum strains were considerably higher. The predominance of L. plantarum in artisanal cheese is probably important in the ripening of these cheeses due to their physiological and biochemical characteristics.  相似文献   

20.
Eleven strains of lactic acid bacteria were tested by the 'spot' on the 'lawn' method for their antagonistic activity against four strains of Listeria monocytogenes. Four out of the five strains of lactic acid bacteria most antagonistic toward the pathogen were those cultures known to produce bacteriocins. Four other strains of lactic acid bacteria were not antagonistic against Listeria by this method. Seventeen inhibition zones of the pathogen were obtained at 25 degrees C as compared to 10 at 32 degrees C. Lactobacillus acidophilus strains NU-A and 88, growing in the presence of L. monocytogenes in milk prevented the latter from attaining populations it would have in pure culture (P less than 0.01). 10(1.4)-10(3.5) lower numbers were noted. L. acidophilus in most cases exhibited a bacteriostatic effect toward the pathogen except for strain 88 which appeared to have a bactericidal effect (P less than 0.01) against Listeria strain OH. The lactobacilli reduced the pH of the milk to 4.7 over a 24 h period, showing that acid played a role in the observed antibiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号