首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Energy Conversion and Management》2005,46(15-16):2373-2386
Tobacco seeds are a by product of tobacco leaves production. To the author’s best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO2 emissions while causing slightly higher NOx emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester.  相似文献   

2.
Recent concerns over the environment, increasing fuel prices and scarcity of its supply have promoted the interest in development of the alternative sources for petroleum fuels. At present, biodiesel is commercially produced from the refined edible vegetable oils such as sunflower oil, palm oil and soybean oil, etc. by alkaline-catalyzed esterification process. This process is not suitable for production of biodiesel from many unrefined non-edible vegetable oils because of their high acid value. Hence, a two-step esterification method is developed to produce biodiesel from high FFA vegetable oils. The biodiesel production method consists of acid-catalyzed pretreatment followed by an alkaline-catalyzed transesterification. The important properties of methyl esters of rubber seed oil are compared with other esters and diesel. Pure rubber seed oil, diesel and biodiesel are used as fuels in the compression ignition engine and the performance and emission characteristics of the engine are analyzed. The lower blends of biodiesel increase the brake thermal efficiency and reduce the fuel consumption. The exhaust gas emissions are reduced with increase in biodiesel concentration. The experimental results proved that the use of biodiesel (produced from unrefined rubber seed oil) in compression ignition engines is a viable alternative to diesel.  相似文献   

3.
《Biomass & bioenergy》2003,24(2):141-149
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high-energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. With the exception of rape seed oil which is the principal raw material for biodiesel fatty acid methyl esters, sunflower oil, corn oil and olive oil, which are abundant in Southern Europe, along with some wastes, such as used frying oils, appear to be attractive candidates for biodiesel production. In this paper, fuel consumption and exhaust emissions measurements from a single cylinder, stationary diesel engine are described. The engine was fueled with pure marine diesel fuel and blends containing two types of biodiesel, at proportions up to 50%. The two types of biodiesel appeared to have equal performance, and irrespective of the raw material used for their production, their addition to the marine diesel fuel improved the particulate matter, unburned hydrocarbons, nitrogen oxide and carbon monoxide emissions.  相似文献   

4.
This paper reviews the production and characterization of biodiesel (BD or B) as well as the experimental work carried out by many researchers in this field. BD fuel is a renewable substitute fuel for petroleum diesel or petrodiesel (PD) fuel made from vegetable or animal fats. BD fuel can be used in any mixture with PD fuel as it has very similar characteristics but it has lower exhaust emissions. BD fuel has better properties than that of PD fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. There are more than 350 oil bearing crops identified, among which only sunflower, safflower, soybean, cottonseed, rapeseed and peanut oils are considered as potential alternative fuels for diesel engines. The major problem associated with the use of pure vegetable oils as fuels, for Diesel engines are caused by high fuel viscosity in compression ignition. Dilution, micro-emulsification, pyrolysis and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Dilution of oils with solvents and microemulsions of vegetable oils lowers the viscosity, some engine performance problems still exist. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2/s whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2/s. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. An increase in density from 860 to 885 kg/m3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm2/s and the increases are highly regular. The purpose of the transesterification process is to lower the viscosity of the oil. The transesterfication of triglycerides by methanol, ethanol, propanol and butanol, has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

5.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engine [Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev 2000;4:111–33. [1]; Vellguth G. Performance of vegetable oils and their monoesters as fuels for diesel engines. SAE 831358, 1983. [2]; Demirbas A. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Int J Prog Energy Combust Sci 2005;31:466–87. [3]; Jajoo BN, Keoti RS. Evaluation of vegetable oils as supplementary fuels for diesel engines. In: Proceedings of the XV national conference on IC engines and combustion, Anna University Chennai, 1997. [4]; Altin R, Cetinkaya S, Yucesu HS. The potential of using vegetable oil fuels as fuel for diesel engines. Int J Energy Convers Manage 2000;42:529–38, 248. [5]; Gajendra Babu MK, Chandan Kumar Das LM. Experimental investigations on a Karanja oil methyl ester fuelled DI diesel engine. SAE 2006-01-0238, 2006. [6]; Agarwal D, Kumar Agarwal A. Performance and emission characteristics of a Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Int J Appl Therm Eng 2007;27:2314–23. [7]]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engine has limited applications due to higher domestic requirement [Scholl Kyle W, Sorenson Spencer C. Combustion Analysis of soyabean oil methyl ester in a direct injection diesel engine. SAE 930934, 1993. [8]; Nwafor OMI. Effect of advanced injection timing on the performance of rapeseed oil in diesel engines. Int J Renew Energy 2000;21:433–44. [9]; Nwafor OMI. The effect of elevated fuel inlet temperature on performance of diesel engine running on neat vegetable oil at constant speed conditions. Renew Energy 2003;28:171–81. [10]]. In view of this, Honge oil (Pongamia Pinnata Linn) being non-edible oil could be regarded as an alternative fuel for CI engine applications. The viscosity of Honge oil is reduced by transesterification process to obtain Honge oil methyl ester (HOME).Gasification is a process in which solid biomass is converted into a mixture of combustible gases, which complete their combustion in an IC engine. Hence, producer gas can act as a promising alternative fuel, especially for diesel engines by substituting considerable amount of diesel fuels. Downdraft moving bed gasifiers coupled with IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Hence, bioderived gas and vegetable liquids appear more attractive in view of their friendly environmental nature. Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted for improving their performance.  相似文献   

6.
The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NOX, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NOX) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation.  相似文献   

7.
《Biomass & bioenergy》2005,28(1):87-93
There is an increasing interest in many countries to search for suitable alternative fuels that are environment friendly. Although straight vegetable oils can be used in diesel engines, their high viscosities, low volatilities and poor cold flow properties have led to the investigation of various derivatives. Biodiesel is a fatty acid alkyl ester, which can be derived from any vegetable oil by transesterification. Biodiesel is a renewable, biodegradable and non-toxic fuel. In this study, Mahua oil (Madhuca indica seed oil) was transesterified with methanol using sodium hydroxide as catalyst to obtain mahua oil methyl ester. This biodiesel was tested in a single cylinder, four stroke, direct injection, constant speed, compression ignition diesel engine (Kirloskar) to evaluate the performance and emissions.  相似文献   

8.
Methyl and ethyl esters as biodiesel fuels were prepared from linseed oil with transesterification reaction in non-catalytic supercritical fluids conditions. Biodiesel fuel is a renewable substitute fuel for petroleum diesel fuel made from vegetable or animal fats. Biodiesel fuel has better properties than that of petroleum diesel fuel such as renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. The purpose of the transesterification process is to lower the viscosity of the oil. The viscosity values of linseed oil methyl and ethyl esters highly decreases after transesterification process. The viscosity values of vegetable oils vary between 27.2 and 53.6 mm2 s?1, whereas those of vegetable oil methyl esters between 3.59 and 4.63 mm2 s?1. Compared with no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The transesterification of linseed oil in supercritical fluids such as methanol and ethanol has proved to be the most promising process. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages among other new-renewable and clean engine fuel alternatives. The most important variables affecting the methyl ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification.  相似文献   

9.
In this investigation, castor methyl ester (CME) was prepared by transesterification using potassium hydroxide (KOH) as catalyst and was used in four stroke, single cylinder variable compression ratio type diesel engine. Tests were carried out at a rated speed of 1500 rpm at different loads. Straight vegetable oils pose operational and durability problems when subjected to long term usages in diesel engines. These problems are attributed to high viscosity, low volatility and polyunsaturated character of vegetable oils. The process of transesterification is found to be an effective method of reducing vegetable oil viscosity and eliminating operational and durability problems. The important properties of methyl ester of castor seed oil are compared with diesel fuel. The engine performance was analysed with different blends of biodiesel and was compared with mineral diesel. It was concluded that the lower blends of biodiesel increased the break thermal efficiency and reduced the fuel consumption. The exhaust gas temperature increased with increasing biodiesel concentration. The results proved that the use of biodiesel (produced from castor seed oil) in compression ignition engine is a viable alternative to diesel.  相似文献   

10.
《能源学会志》2014,87(3):188-195
Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental-friendly nature. But biodiesel undergoes oxidation and degenerate more quickly than mineral diesel. Further several studies report NOx emissions increases for biodiesel fuel compared with conventional diesel fuel. In this paper, the experimental investigation of the effect of antioxidant additive (Butylated hydroxytoluene) on oxidation stability and NOx emissions in a methyl ester of neem oil fuelled direct injection diesel engine has been reported. The antioxidant additive is mixed in various proportions (100–400 ppm) with methyl ester of neem oil. The oxidation stability was tested in Rancimat apparatus and emissions, performance in a computerized 4-stroke water-cooled single cylinder diesel engine of 3.5 kW rated power. Results show that the antioxidant additive is effective in increasing the oxidation stability and in controlling the NOx emissions of methyl ester of neem oil fuelled diesel engines.  相似文献   

11.
In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, methyl alcohol, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel oil substitute for internal combustion engines. Biomass is basically composed of carbon, hydrogen and oxygen. A proximate analysis of biomass indicates the volatile matter to be between 60–80% and 20–25% carbon and the rest, ash. The first part of sub-stoichiometric oxidation leads to the loss of volatiles from biomass and is exothermic; it results in peak temperatures of 1400–1500 K and generation of gaseous products like carbon monoxide, hydrogen in some proportions and carbon dioxide and water vapor, which in turn are reduced in part to carbon monoxide and hydrogen by the hot bed of charcoal generated during the process of gasification. Therefore, solid biomass can be converted into a mixture of combustible gases, and subsequently utilized for combustion in a CI engine. Producer gas, if used in dual fuel mode, is an excellent substitute for reducing the amount of diesel consumed by the CI engine. Downdraft moving bed gasifiers coupled with an IC engine are a good choice for moderate quantities of available biomass, up to 500 kW of electric power. Vegetable oils present a very promising alternative to diesel oil since they are renewable and have similar properties. Vegetable oils offer almost the same power output with slightly lower thermal efficiency when used in diesel engines [1], [2], [3], [4], [5], [6], [7]. Research in this direction with edible oils have yielded encouraging results, but their use as fuel for diesel engines has limited applications due to higher domestic requirement [8], [9], [10]. In view of this, Honge oil (Pongamia Pinnata Linn) is selected and its viscosity is reduced by the transesterification process to obtain Honge oil methyl ester (HOME). Since vegetable oils produce higher smoke emissions, dual fuel operation could be adopted in order to improve their performance. A gas carburetor was suitably designed to maximize the engine performance in dual fuel mode with Honge oil–producer gas and HOME–producer gas respectively. Thus bio-derived gas and vegetable oil, when used in a dual fuel mode with carburetor, resulted in better performance with reduced emissions.  相似文献   

12.
Progress in biodiesel processing   总被引:3,自引:0,他引:3  
Biodiesel is a notable alternative to the widely used petroleum-derived diesel fuel since it can be generated by domestic natural sources such as soybeans, rapeseeds, coconuts, and even recycled cooking oil, and thus reduces dependence on diminishing petroleum fuel from foreign sources. The injection and atomization characteristics of the vegetable oils are significantly different than those of petroleum-derived diesel fuels, mainly as the result of their high viscosities. Modern diesel engines have fuel-injection system that is sensitive to viscosity change. One way to avoid these problems is to reduce fuel viscosity of vegetable oil in order to improve its performance. The conversion of vegetable oils into biodiesel is an effective way to overcome all the problems associated with the vegetable oils. Dilution, micro-emulsification, pyrolysis, and transesterification are the four techniques applied to solve the problems encountered with the high fuel viscosity. Transesterification is the most common method and leads to monoalkyl esters of vegetable oils and fats, now called biodiesel when used for fuel purposes. The methyl ester produced by transesterification of vegetable oil has a high cetane number, low viscosity and improved heating value compared to those of pure vegetable oil which results in shorter ignition delay and longer combustion duration and hence low particulate emissions.  相似文献   

13.
燃料甲酯应用研究初探   总被引:3,自引:1,他引:3  
本文介绍了燃料甲酯用于发动机台架试验的情况。燃料甲酯是利用植物油脚料提炼而成,其主要理论性质与0号柴油相近。初步试验结果表明:燃料甲酯用作柴油机代用燃料时,由于其热值稍低而使比油耗相应略高之外,在其它性能方面均与烧柴油时大体上相当,且可与柴油以任意比例掺合。另外从代用燃料角度而言,甲酯与甲醇与良好的互溶性,可掺合作燃料而不需采用特殊措施,此是优于柴油掺甲醇之处。燃料甲酯用于汽油机时可作为甲醇汽油的  相似文献   

14.
The study endeavor to utilize esters of Balanites aegyptiaca (L.) Del(Balanites) as a fuel for diesel engine. Ester developed from balanites oil by the transesterification process is investigated for its properties and the engine performance. A single stage alkali-catalyzed esterification process by using 1.25% KOH, methyl alcohol 8:1 molar ratio with respect to balanites oil, gives the maximum ester yield of 95%. The performance and emission characteristics of the engine are analyzed using balanites oil methyl esters and diesel as fuel. The viscosity of balanites oil is found to be decreased by 89% after esterification, and the calorific value of balanites oil methyl esters is nearly 94% of the diesel fuel. The engine performance with balanites oil methyl ester as a fuel resembles to that of conventional diesel fuel, while the exhaust gas emissions are reduced with the use of balanites oil methyl esters.  相似文献   

15.
This paper investigates the scope of utilizing biodiesel developed from both through the methyl as well as ethyl alcohol route (methyl and ethyl ester) from Karanja oil as an alternative diesel fuel. The major problem of using neat Karanja oil as a fuel in a compression ignition engine arises due to its very high viscosity. Transesterification with alcohols reduces the viscosity of the oil and other properties have been evaluated to be comparable with those of diesel. In the present work, methyl and ethyl esters of Karanja oil were prepared by transesterification using both methanol and ethanol. The physical and chemical properties of ethyl esters were comparable with that of methyl esters. However, viscosity of ethyl esters was slightly higher than that of methyl esters. Cold flow properties of ethyl esters were better than those of methyl esters. Performance and exhaust emission characteristics of the engine were determined using petrodiesel as the baseline fuel and several blends of diesel and biodiesel as test fuels. Results show that methyl esters produced slightly higher power than ethyl esters. Exhaust emissions of both esters were almost identical. These studies show that both methyl and ethyl esters of Karanja oil can be used as a fuel in compression ignition engine without any engine modification.  相似文献   

16.

Numerous studies indicated that oil sources in the world will come to an end. As a result, new alternative energy sources will be required to substitute for oil. Some of the experimental studies showed that vegetable oil can be used as alternative fuel in diesel engines. The viscosity of vegetable oil is much higher than that of standard diesel fuel; therefore, the high viscosity of the vegetable oil can cause problems for injection systems and engine components. To decrease viscosity, cottonseed methyl ester was obtained from raw cottonseed oil by transesterification method. In this study, cottonseed methyl ester was used in a four-stroke, single cylinder, and air-cooled diesel engine as alternative fuel. Engine tests carried out at full load-different speed range, the engine torque and power of cottonseed oil methyl ester was found to be lower than that of diesel fuel in the range of 3–9% and specific fuel consumption was higher than that of diesel fuel by approximately 8–10%. CO 2 , CO, and NO x emissions of cottonseed methyl ester were lower than that of diesel fuel.  相似文献   

17.
Vegetable oil is one of the main first generation liquid biofuels. The fuel characteristics of vegetable oil such as viscosity and atomization cannot be accommodated by existing diesel engines. An alternate process has been developed to improve the fuel characteristics of vegetable oils through the process of alcoholysis to produce a fuel called biodiesel. It can be used in engines as substitute for fossil fuel. This paper reviews the characteristics of different oils available for biodiesel production and the production technologies, engine performance using vegetable oil and biodiesel, and emission studies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Abstract

The objective of this study was to estimate mathematical relationships derived from biodiesel fuels from various vegetable oils by non-catalytic supercritical methanol and ethanol method. The vegetable oils are all extremely viscous with viscosities ranging from 10 to 20 times greater than petroleum diesel fuel. The aim of the transesterification process is to lower the viscosity of the oil. Methyl and ethyl esters as biodiesels were prepared from vegetable oils through transesterification by non-catalytic supercritical fluids. The biodiesels were characterized for their physical and main fuel properties including viscosity, density, flash point and higher heating value (HHV). The viscosities of biodiesels (3–5 mm2/s at 311 K) were much less than those of pure oils (27–54 mm2/s at 311 K), and their HHVs of approximately 40.5 MJ/kg were 10% less than those of petrodiesel fules (~45 MJ/kg). The most important variables affecting the ester yield during the transesterification reaction are molar ratio of alcohol to vegetable oil and reaction temperature. The viscosity values of vegetable oil methyl esters highly decreases after transesterification process. Compared to no. 2 diesel fuel, all of the vegetable oil methyl esters were slightly viscous. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. The flash point values of vegetable oil methyl esters are highly lower than those of vegetable oils. There is high regression between density and viscosity values vegetable oil methyl esters. The relationships between viscosity and flash point for vegetable oil methyl esters are considerably regular.  相似文献   

19.
Fuel properties of rapeseed oil and soybean oil methyl esters (e.g. density, cetane number and viscosity etc.) are similar to those of the diesel fuel. These methyl esters can be used as diesel engine fuel by mixing withy diesel fuel. In this study a comparison of diesel fuel, the rapeseed oil methyl ester and the soybean oil methyl ester was made from the engine performance and emissions point of view. The tests were carried out with a four-cylinder diesel engine for tree different injection pressures such as 250, 300 and 350 bar with each of these fuels. For the purpose of comparison, tests were also conducted at full load conditions with diesel fuel. As the result, the performance and emission values of rapeseed oil (R) and soybean oil (S) methyl esters were found to be nearly the same with those of diesel fuels (D) when injection pressure was increased to 300 bar.  相似文献   

20.
非直喷式增压柴油机燃用生物柴油的性能与排放特性   总被引:36,自引:0,他引:36  
研究了非直喷式增压柴油机燃用柴油一生物柴油混合燃料的性能和排放特性。未对原机作任何调整和改动,研究了不同生物柴油掺混比例的混合燃料对功率、油耗、烟度和NOx排放的影响。结果表明:非直喷式柴油机燃用生物柴油后柴油机功率略有下降,油耗有所上升,烟度大幅下降,NOx排放增加明显。油耗、烟度和NOx的变化均与生物柴油掺混比例呈线性关系,合适的生物柴油掺混比例即可以保持柴油机的性能,又可有效地降低碳烟排放,且不引起NOx排放的显著变化。对于该增压柴油机,掺混生物柴油对外特性下的排放影响最大,影响最小的为标定转速下的负荷特性。不论是全负荷还是部分负荷,燃用生物柴油时低速下的烟度降低和NOx上升幅度均比高速时大,而同转速下高负荷时烟度降低和NOx上升更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号