首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper examines policy and technology scenarios in California, emphasizing greenhouse gas (GHG) emissions in 2020 and 2030. Using CALGAPS, a new, validated model simulating GHG and criteria pollutant emissions in California from 2010 to 2050, four scenarios were developed: Committed Policies (S1), Uncommitted Policies (S2), Potential Policy and Technology Futures (S3), and Counterfactual (S0), which omits all GHG policies. Forty-nine individual policies were represented. For S1–S3, GHG emissions fall below the AB 32 policy 2020 target [427 million metric tons CO2 equivalent (MtCO2e) yr−1], indicating that committed policies may be sufficient to meet mandated reductions. In 2030, emissions span 211–428 MtCO2e yr−1, suggesting that policy choices made today can strongly affect outcomes over the next two decades. Long-term (2050) emissions were all well above the target set by Executive Order S-3-05 (85 MtCO2e yr−1); additional policies or technology development (beyond the study scope) are likely needed to achieve this objective. Cumulative emissions suggest a different outcome, however: due to early emissions reductions, S3 achieves lower cumulative emissions in 2050 than a pathway that linearly reduces emissions between 2020 and 2050 policy targets. Sensitivity analysis provided quantification of individual policy GHG emissions reduction benefits.  相似文献   

2.
Policies formulated to reduce greenhouse gas (GHG) emissions, such as a low-carbon fuel standard, frequently rely on life-cycle assessment (LCA) to estimate emissions, but LCA results are often highly uncertain. This study develops life-cycle models that quantitatively and qualitatively describe the uncertainty and variability in GHG emissions for both fossil fuels and ethanol and examines mechanisms to reduce those uncertainties in the policy process. Uncertainty regarding emissions from gasoline is non-negligible, with an estimated 90% confidence interval ranging from 84 to 100 g CO2e/MJ. Emissions from biofuels have greater uncertainty. The widths of the 90% confidence intervals for corn and switchgrass ethanol are estimated to be on the order of 100 g CO2e/MJ, and removing emissions from indirect land use change still leaves significant remaining uncertainty. Though an opt-in policy mechanism can reduce some uncertainty by incentivizing producers to self-report fuel production parameters, some important parameters, such as land use change emissions and nitrogen volatilization, cannot be accurately measured and self-reported. Low-carbon fuel policies should explicitly acknowledge, quantify, and incorporate uncertainty in life cycle emissions in order to more effectively achieve emissions reductions. Two complementary ways to incorporate this uncertainty in low carbon fuel policy design are presented.  相似文献   

3.
The impact of anaerobic digestion (AD) technology on mitigating greenhouse gas (GHG) emissions from manure management on typical dairy, sow and pig farms in Finland was compared. Firstly, the total annual GHG emissions from the farms were calculated using IPCC guidelines for a similar slurry type manure management system. Secondly, laboratory-scale experiments were conducted to estimate methane (CH4) potentials and process parameters for semi-continuous digestion of manures. Finally, the obtained experimental data were used to evaluate the potential renewable energy production and subsequently, the possible GHG emissions that could be avoided through adoption of AD technology on the studied farms. Results showed that enteric fermentation (CH4) and manure management (CH4 and N2O) accounted for 231.3, 32.3 and 18.3 Mg of CO2 eq. yr?1 on dairy, sow and pig farms, respectively. With the existing farm data and experimental methane yields, an estimated renewable energy of 115.2, 36.3 and 79.5 MWh of heat yr?1 and 62.8, 21.8 and 47.7 MWh of electricity yr?1 could be generated in a CHP plant on these farms respectively. The total GHG emissions that could be offset on the studied dairy cow, sow and pig farms were 177, 87.7 and 125.6 Mg of CO2 eq. yr?1, respectively. The impact of AD technology on mitigating GHG emissions was mainly through replaced fossil fuel consumption followed by reduced emissions due to reduced fertilizer use and production, and from manure management.  相似文献   

4.
《Biomass & bioenergy》2006,30(7):605-617
In this study, micro-level data from wood energy producers in Hedmark County were gathered and analysed. The aim was to find how much greenhouse gas (GHG) emissions various kinds of wood energy cause (not only CO2, but also CH4 and N2O), which energy they substitute, their potential to reduce GHG emissions, and the major sources of uncertainty. The method was life cycle assessment. Six types of wood energy were studied: fuel wood, sawdust, pellets, briquettes, demolition wood, and bark.GHG emissions over the life cycle of the wood energy types in this study are 2–19% of the emissions from a comparable source of energy. The lowest figure is for demolition wood substituting oil in large combustion facilities, the highest for fuel wood used in dwellings to substitute electricity produced by coal-based power plants.Avoided GHG emissions per m3 wood used for energy were from 0.210 to 0.640 tonne CO2-equivalents. Related to GWh energy produced, avoided GHG emissions were from 250 to 360 tonne CO2-equivalents. Avoided GHG emissions per tonne CO2 in the wood are 0.28–0.70 tonne CO2-equivalents. The most important factors were technology used for combustion, which energy that is substituted, densities, and heating values. Inputs concerning harvest, transport, and production of the wood energy are not important.Overall, taking the uncertainties into account there is not much difference in avoided GHG emissions for the different kinds of wood energy.  相似文献   

5.
This paper analyzes utilization of carbon-negative biofuels from low-input high-diversity grassland biomass on degraded lands (LIHD) for energy including energy equivalent to green house gases (GHG) capture and storage. The results show that the energy output of LIHD biomass on degraded soil is nearly equal to that of ethanol from conventional corn grain on fertile soil. It has also been shown that LIHD biofuel is far more economical than the conventional biofuels such as corn ethanol or soybean biodiesel.China is a large agriculturally developing country, with its rural area largely populated and vast land degraded. It is in this respect that we analyzed the utilization of LIHD. The potential of using energy from LIHD biomass on degraded lands in China is estimated. The results show that the potential energy production of LIHD biomass reaches 6350971.32 TJ year?1, accounting for about 15% of China’s energy consumption in 2002.  相似文献   

6.
《Biomass & bioenergy》2006,30(4):296-303
Mitigating global climate change via CO2 emission control and taxation is likely to enhance the economic potential of bioenergy production and utilization. This study investigated the cost competitiveness of woody biomass for electricity production in the US under alternative CO2 emission reductions and taxes. We first simulated changes in the price of coal for electricity production due to CO2 emission reductions and taxation using a computable general equilibrium model. Then, the costs of electricity generation fueled by energy crops (hybrid poplar), logging residues, and coal were estimated using the capital budgeting method. Our results indicate that logging residues would be competitive with coal if emissions were taxed at about US$25 Mg−1 CO2, while an emission tax US$100 Mg−1 CO2 or higher would be needed for hybrid poplar plantations at a yield of 11.21 dry Mg ha−1 yr−1 (5 dry tons ac−1 yr−1) to compete with coal in electricity production. Reaching the CO2 emission targets committed under the Kyoto Protocol would only slightly increase the price of fossil fuels, generating little impact on the competitiveness of woody biomass. However, the price of coal used for electricity production would significantly increase if global CO2 emissions were curtailed by 20% or more. Logging residues would become a competitive fuel source for electricity production if current global CO2 emissions were cut by 20–30%. Hybrid poplar plantations would not be able to compete with coal until emissions were reduced by 40% or more.  相似文献   

7.
《Biomass & bioenergy》2007,31(8):543-555
The energetic and environmental performance of production and distribution of the Brassica carinata biomass crop in Soria (Spain) is analysed using life cycle assessment (LCA) methodology in order to demonstrate the major potential that the crop has in southern Europe as a lignocellulosic fuel for use as a renewable energy source.The Life Cycle Impact Assessment (LCIA) including midpoint impact analysis that was performed shows that the use of fertilizers is the action with the highest impact in six of the 10 environmental categories considered, representing between 51% and 68% of the impact in these categories.The second most important impact is produced when the diesel is used in tractors and transport vehicles which represents between 48% and 77%. The contribution of the B. carinata cropping system to the global warming category is 12.7 g CO2 eq. MJ−1 biomass produced. Assuming a preliminary estimation of the B. carinata capacity of translocated CO2 (631 kg CO2 ha−1) from below-ground biomass into the soil, the emissions are reduced by up to 5.2 g CO2 eq. MJ−1.The production and transport are as far as a thermoelectric plant of the B. carinata biomass used as a solid fuel consumes 0.12 MJ of primary energy per 1 MJ of biomass energy stored. In comparison with other fossil fuels such as natural gas, it reduces primary energy consumption by 33.2% and greenhouse gas emission from 33.1% to 71.2% depending on whether the capacity of translocated CO2 is considered or not.The results of the analysis support the assertion that B. carinata crops are viable from an energy balance and environmental perspective for producing lignocellulosic solid fuel destined for the production of energy in southern Europe. Furthermore, the performance of the crop could be improved, thus increasing the energy and environmental benefits.  相似文献   

8.
《Biomass & bioenergy》2006,30(7):638-647
The use of firewood for domestic heating has the potential to reduce fossil-fuel use and associated CO2 emissions. The level of possible reductions depends upon the extent to which firewood off-sets the use of fossil fuels, the efficiency with which wood is burnt, and use of fossil fuels for collection and transport of firewood. Plantations grown for firewood also have a cost of emissions associated with their establishment. Applying the FullCAM model and additional calculations, these factors were examined for various management scenarios under three contrasting firewood production systems (native woodland, sustainably managed native forest, and newly established plantations) in low-medium rainfall (600–800 mm) regions of south-eastern Australia. Estimates of carbon dioxide emissions per unit of heat energy produced for all scenarios were lower than for non-renewable energy sources (which generally emit about 0.3–1.0 kg CO2 kWh−1). Amongst the scenarios, emissions were greatest when wood was periodically collected from dead wood in woodlands (0.11 kg CO2 kWh−1), and was much lower when obtained from harvest residues and dead wood in native forests (<0.03 kg CO2 kWh−1). When wood was obtained from plantations established on previously cleared agricultural land, use of firewood led to carbon sequestration equivalent to −0.06 kg CO2 kWh−1 for firewood obtained from a coppiced plantation, and −0.17 kg CO2 kWh−1 for firewood collected from thinnings, slash and other residue in a plantation grown for sawlog production. An uncertainty analysis, where inputs and assumptions were varied in relation to a plausible range of management practices, identified the most important influencing factors and an expected range in predicted net amount of CO2 emitted per unit of heat energy produced from burning firewood.  相似文献   

9.
Ethanol is one of the most important renewable biofuels contributing to the reduction of negative environmental impacts generated by the worldwide utilization of fossil fuels, and the presence of metal ions in fuel ethanol has significant effect on the performance and the quality of fuel. In the present work, silica gel functionalized by poly(triethylenetetraminomethylenephosphonic acid) SG-Cl-T-P was successfully developed by heterogenous synthesis method, and the adsorption capacity of Hg(II) from fuel ethanol via SG-Cl-T-P was examined. The adsorption isotherms were fitted by the Langmuir model, the Freundlich model and the Dubinin–Radushkevich (D–R) model. Furthermore, the adsorption study was analyzed kinetically. The thermodynamic parameters, including the Gibbs free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) were calculated, they were −3.24 kJ mol−1 (35 °C) , 29.25 kJ mol−1, and 106.20 J K−1 mol−1, respectively.  相似文献   

10.
This paper analyzes and compares the environmental impacts of biomass combustion in small appliances such as domestic open fireplaces and stoves, and in two types of centralized combined heat and power plants, feeding district heating networks. The analysis is carried out following a Life Cycle Assessment (LCA) approach. The expected savings of GHG (greenhouse gases) emissions due to the substitution of fossil fuels with biomass are quantified, as well as emissions of toxic pollutants and substances responsible for acidification and ozone formation.The LCA results show net savings of GHG emissions when using biomass instead of conventional fuels, varying from 0.08 to 1.08 t of CO2 eq. per t of dry biomass in the different scenarios. Avoided GHG emissions thanks to biomass combustion in Lombardy are 1.32 Mt year?1(1.5% of total regional GHG emissions). For the other impact categories, the use of biomass in district heating systems can again cause a consistent reduction of impacts, whereas biomass combustion in residential devices shows higher impacts than fossil fuels with a particular concern for PAH, VOC and particulate matter emissions. For example, in Lombardy, PM10 emissions from domestic devices are about 8100 t year?1, corresponding to almost one third of the total particulate emissions in 2005.  相似文献   

11.
This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.  相似文献   

12.
Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions. Results have varied widely. This work builds upon reports from operating facilities and other primary data sources to build a database of front end environmental impacts. This work also addresses land transformation and water withdrawals associated with the processes of the FEFC. These processes include uranium extraction, conversion, enrichment, fuel fabrication, depleted uranium disposition, and transportation.To allow summing the impacts across processes, all impacts were normalized per tonne of natural uranium mined as well as per MWh(e) of electricity produced, a more conventional unit for measuring environmental impacts that facilitates comparison with other studies. This conversion was based on mass balances and process efficiencies associated with the current once-through LWR fuel cycle.Total energy input is calculated at 8.7 × 10 3 GJ(e)/MWh(e) of electricity and 5.9 × 10 3 GJ(t)/MWh(e) of thermal energy. It is dominated by the energy required for uranium extraction, conversion to fluoride compound for subsequent enrichment, and enrichment. An estimate of the carbon footprint is made from the direct energy consumption at 1.7 kg CO2/MWh(e). Water use is likewise dominated by requirements of uranium extraction, totaling 154 L/MWh(e). Land use is calculated at 8 × 10 3 m2/MWh(e), over 90% of which is due to uranium extraction. Quantified impacts are limited to those resulting from activities performed within the FEFC process facilities (i.e. within the plant gates). Energy embodied in material inputs such as process chemicals and fuel cladding is identified but not explicitly quantified in this study. Inclusion of indirect energy associated with embodied energy as well as construction and decommissioning of facilities could increase the FEFC energy intensity estimate by a factor of up to 2.  相似文献   

13.
《Biomass & bioenergy》2005,28(5):454-474
In the face of climate change that may result from greenhouse gas (GHG) emissions, the scarcity of agricultural land and limited competitiveness of biomass energy on the market, it is desirable to increase the performance of bioenergy systems. Multi-product crops, i.e. using a crop partially for energy and partially for material purposes can possibly create additional incomes as well as additional GHG emission reductions. In this study, the performance of several multi-product crop systems is compared to energy crop systems, focused on the costs of primary biomass fuel costs and GHG emission reductions per hectare of biomass production. The sensitivity of the results is studied by means of a Monte-Carlo analysis. The multi-product crops studied are wheat, hemp and poplar in the Netherlands and Poland. GHG emission reductions of these multi-product crop systems are found to be between 0.2 and 2.4 Mg CO2eq/(ha yr) in Poland and 0.9 and 7.8 Mg CO2eq/(ha yr) in the Netherlands, while primary biomass fuel costs range from −4.1 to −1.7 €/GJ in the Netherlands and from 0.1 to 9.8 €/GJ in Poland. Results show that the economic attractiveness of multi-product crops depends strongly on material market prices, crop production costs and crop yields. Net annual GHG emission reductions per hectare are influenced strongly by the specific GHG emission reduction of material use, reference energy systems and GHG emissions of crop production. Multi-product use of crops can significantly decrease primary biomass fuel costs. However, this does not apply in general, but depends on the kind of crops and material uses. For the examples analysed here, net annual GHG emission reductions per hectare are not lowered by multi-product use of crops. Consequently, multi-product crops are not for granted an option to increase the performance of bioenergy systems. Further research on the feasibility of large-scale multi-product crop systems and their impact on land and material markets is desirable.  相似文献   

14.
《Biomass & bioenergy》2006,30(3):273-277
Upflow anaerobic sludge blanket (UASB) reactor was installed to replace the conventional anaerobic lagoon treating bagasse wash wastewater from agro-based pulp and paper mill, to generate bio-energy and to reduce greenhouse gas emissions. The plant was designed to treat 12 ML d−1 of wastewater having two 5 ML capacity reactors, 5.75 kg COD m−3 d−1 organic loading rate and 20 h hydraulic retention time. In the plant 80–85% COD reduction was achieved with biogas production factor of 520 L kg−1 COD reduced. In 11 months 4.4 million m3 of biogas was generated from bagasse wash wastewater utilizing UASB process. Utilization of the biogas in the Lime Kiln saved 2.14 ML of furnace oil in 9 months. Besides significant economic benefits, furnace oil saving reduced 6.4 Gg CO2 emission from fossil fuel and conversion of the anaerobic lagoon into anaerobic reactor reduced 2.1 Gg methane emission which is equal to 43.8 Gg of CO2.  相似文献   

15.
《Biomass & bioenergy》2007,31(2-3):126-136
Crop residue has been identified as a near-term source of biomass for renewable fuel, heat, power, chemicals and other bio-materials. A prototype one-pass harvest system was used to collect residue samples from a corn (Zea mays L.) field near Ames, IA. Four harvest scenarios (low cut, high-cut top, high-cut bottom, and normal cut) were evaluated and are expressed as collected stover harvest indices (CSHI). High-cut top and high-cut bottom samples were obtained from the same plot in separate operations. Chemical composition, dilute acid pretreatment response, ethanol conversion yield and efficiency, and thermochemical conversion for each scenario were determined. Mean grain yield in this study (10.1 Mg ha−1 dry weight) was representative of the average yield (10.0 Mg ha−1) for the area (Story County, IA) and year (2005). The four harvest scenarios removed 6.7, 4.9, 1.7, and 5.1 Mg ha−1 of dry matter, respectively, or 0.60 for low cut, 0.66 for normal cut, and 0.61 for the total high-cut (top+bottom) scenarios when expressed as CSHI values. The macro-nutrient replacement value for the normal harvest scenario was $57.36 ha−1 or $11.27 Mg−1. Harvesting stalk bottoms increased stover water content, risk of combine damage, estimated transportation costs, and left insufficient soil cover, while also producing a problematic feedstock. These preliminary results indicate harvesting stover (including the cobs) at a height of approximately 40 cm would be best for farmers and ethanol producers because of faster harvest speed and higher quality ethanol feedstock.  相似文献   

16.
The effects of five different biomass species and their chemical composition on the overall process efficiency and economic performance considering feedstock availability and feedstock costs to manufacture ethanol from lignocellulose were studied. First is a comparison of ethanol production and excess electricity generated between different biomass species. Results show that, at the same feedstock rate of 2000 Mg day?1, aspen wood has larger ethanol production than switchgrass, hybrid poplar and corn stover, while the excess electricity generated is as follows in increasing order: aspen < corn stover < hybrid poplar/switchgrass. Second, our results show that the ethanol production is largely linear with holocellulose (cellulose plus hemicellulose) composition of the various biomass species. However, the relationship between excess electricity generated and non-holocellulose combustible component is nonlinear. Last, on environmental performance, it is found that the water losses per unit ethanol production are in the following order: aspen wood < corn stover < hybrid poplar < switchgrass. While corn stover is a potential feedstock to produce cellulosic ethanol with the lowest ethanol production cost at the present time, hybrid poplar and switchgrass are the two promising future energy crops.The effects of plant size analysis showed that the estimated feedstock delivered costs, ethanol production, excess electricity generated and solid and gaseous waste emissions all increase with plant size for the various biomass species. The ethanol production costs decrease with the increase in plant size with optimal plant sizes for corn stover in the range from 2000 dry Mg day?1 to 4000 dry Mg day?1.  相似文献   

17.
《Biomass & bioenergy》2006,30(7):655-664
Renewable energy sources such as bioenergy crops have significant potential as alternatives to fossil fuels. Potential environmental problems arising from soil sediment and nutrient losses in runoff water from bioenergy crops need to be evaluated in order to determine the sustainability and overall feasibility of implementing bioenergy development strategies. This paper discusses runoff, sediment, N, and total P losses from agricultural land (continuous cotton (Gossypium hirsutum L.)) converted to short-rotation sweetgum (Liquidamber styraciflua L.) plantations with and without fescue (Festuca elatior L.) and switchgrass (Panicum virgatum L.) bioenergy crops, compared to corn (Zea mays L.), on a Decatur silt loam soil in north Alabama, from 1995 to 1999. Runoff volume was significantly correlated to total rainfall and sediment yield in each year, but treatment differences were not significant. Sweetgum plots produced the highest mean sediment yield of up to 800 kg ha−1compared to corn and switchgrass plots, which averaged less than 200 kg ha−1. Runoff NH4+ N losses averaged over treatments and years for spring season (3.1 kg ha−1) were three to five times those for summer, fall, and winter seasons. Runoff NO3 N for no-till corn and switchgrass plots in spring and summer were five to ten times that for sweetgum plots. No-till corn and switchgrass treatments had 2.4 and 2.1 kg ha−1 average runoff total P, respectively, which were two to three times that for sweetgum treatments. Growing sweetgum with a fescue cover crop provides significantly lower risk of water pollution from sediment, runoff NH4+ N, and NO3 N.  相似文献   

18.
Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn–soybean rotation with complete corn-stover removal. Field experiments consisting of a corn–soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was ?934 and ?784 g m?2 y?1, respectively, compared to 52 g m?2 y?1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.  相似文献   

19.
《Journal of power sources》2006,162(2):1073-1076
A 28-W direct borohydride–hydrogen peroxide fuel-cell stack operating at 25 °C is reported for contemporary portable applications. The fuel cell operates with the peak power-density of ca. 50 mW cm−2 at 1 V. This performance is superior to the anticipated power-density of 9 mW cm−2 for a methanol–hydrogen peroxide fuel cell. Taking the fuel efficiency of the sodium borohydride–hydrogen peroxide fuel cell as 24.5%, its specific energy is ca. 2 kWh kg−1. High power-densities can be achieved in the sodium borohydride system because of its ability to provide a high concentration of reactants to the fuel cell.  相似文献   

20.
《Journal of power sources》2002,107(1):103-109
Polymer electrolytes consisting of poly(ethylene oxide) (PEO) and lithium salts, such as LiCF3SO3 and LiBF4 are prepared by the ball-milling method. This is performed at various times (2, 4, 8, 12 h) with ball:sample ratio of 400:1. The electrochemical and thermal characteristics of the electrolytes are evaluated. The structure and morphology of PEO–LiX polymer electrolyte is changed to amorphous and smaller spherulite texture by ball milling. The ionic conductivity of the PEO–LiX polymer electrolytes increases by about one order of magnitude than that of electrolytes prepared without ball milling. Also, the ball milled electrolytes have remarkably higher ionic conductivity at low temperature. Maximum ionic conductivity is found for the PEO–LiX prepared by ball milling for 12 h, viz. 2.52×10−4 S cm−1 for LiCF3SO3 and 4.99×10−4 S cm−1 for LiBF4 at 90 °C. The first discharge capacity of Li/S cells increases with increasing ball milling time. (PEO)10LiCF3SO3 polymer electrolyte prepared by ball milling show the typical two plateau discharge curves in a Li/S battery. The upper voltage plateau for the polymer electrolyte containing LiBF4 differs markedly from the typical shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号