首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Dairy Journal》2000,10(5-6):369-373
Feta cheese (five trials) of different sodium content was made from split lots of curd by varying the salting procedure, i.e. dry salting with NaCl (control) or mixtures of NaCl/KCl (3 : 1 or 1 : 1, w/w basis) and filling the cans with brine made with NaCl or the above NaCl/KCl mixtures, respectively. Lipolysis in cheese was monitored during aging by using the acid degree value (ADV) method and gas chromatography (GC). It was found that the ADVs of control and experimental cheeses were similar (P>0.05) at all sampling ages (3, 20, 40, 60, 120 and 240 d). Moreover, the results of GC showed that there were neither qualitative nor significant (P>0.05) quantitative differences in the individual free fatty acids (FFA) of the control and experimental cheeses at the ages of 40 and 120 d. These findings indicated that the partial substitution of NaCl by KCl in the manufacture of Feta cheese had no effect on lipolysis during cheese aging.  相似文献   

2.
The effect of two commercially available adjunct cultures, LBC 80 (Lactobacillus casei subsp. rhamnosus) and CR-213 (containing Lactococcus lactis subsp. cremoris and Lc. lactis subsp. lactis) on the proteolysis in low-fat hard ewes’ milk cheese of Kefalograviera-type was investigated. Two controls, a full-fat cheese (306 g kg−1 fat, 378 g kg−1 moisture) and a low-fat cheese (97 g kg−1 fat, 486 g kg−1 moisture, made using a modified procedure), were also prepared. The effect of adjunct culture on proteolysis, as examined by polyacrylamide gel electrophoresis of cheese and water soluble cheese extracts, was marginal. The reverse-phase HPLC peptide profiles of the water soluble extracts from low-fat cheeses were similar although some quantitative differences were observed between low-fat control cheese and experimental cheeses. The fat content as reflected by the differences in peptide profiles affected the pattern of proteolysis. Proteolysis, as measured by the percentage of total nitrogen soluble in water or in 120 g L−1 trichloroacetic acid, was significantly (P<0.05) affected by the addition of adjunct cultures. Furthermore, the adjunct cultures enhanced the production of low molecular mass nitrogenous compounds; the levels of total nitrogen, soluble in 50 g L−1 phosphotungstic acid, and of free amino acids were significantly (P<0.05) higher in the low-fat experimental cheeses than in the low-fat control cheese.  相似文献   

3.
《Food chemistry》2005,93(1):73-80
Lipolysis was studied during ripening of traditional Feta cheese produced in two small dairies, A and B. The cheeses were made from a thermized mixture of ewes’/goats’ milk by using yoghurt as starter and artisanal rennet from lambs’ and kids’ abomasa (cheese A) or mixed artisanal rennet with calf rennet (cheese B).The acid degree value and the free fatty acids (FFA) contents in both cheeses increased sharply up to 18 d (pre-ripening period at 15 °C) and continued to increase throughout ripening. In both mature cheeses, acetic acid was found at high levels (13–18% of the total FFAs). However, except for this, all FFA contents differed significantly (P < 0.05) between the two cheeses throughout ripening. The levels of individual and total C2:0–C8:0, C10:0–C14:0 and C16:0–C18:2 fatty acids were significantly higher (P < 0.05) in cheese A than in cheese B. Presumably the difference, especially in the C2:0–C8:0 content, was due mainly to the type of the rennet used. Butyric acid was the dominant FFA in cheese A (20% of the total FFAs at 120 d), while the most abundant FFAs in cheese B were capric (18%) and lauric acid (18%). In general, the lipolysis degree of the two cheeses was higher than those reported for the industrially-made Feta cheese.In organoleptic evaluation, cheese A had a piquant taste that was attributed to its high content of butyric acid and showed a significantly (P < 0.05) higher total score than cheese B.  相似文献   

4.
This study examined the presence of antimicrobial, antioxidant and antihypertensive peptides in three commercially available Australian Cheddar cheeses. Peptide extracts as well as fractionated peptide extracts were examined. Commercial cheese A peptides exhibited the greatest inhibition against Bacillus cereus and also commercial cheese A fractionated peptides greater than 10 kDa showed the highest inhibition against B. cereus. Commercial cheese A peptides also showed the highest inhibition of 2,2-diphenyl-1-picrylhydrazyl (DPPH), a free radical used to measure antioxidant activity. All cheese fractionated peptides greater than 10 kDa demonstrated higher inhibition of DPPH after fractionation. Antihypertensive peptides were determined by inhibition of the angiotensin-converting enzyme (ACE). Overall, commercial cheese A had the lowest concentration required to inhibit ACE and commercial cheese A fractionated peptides lower than 5 kDa had the lowest inhibition after fractionation. These preliminary findings suggest that peptide extracts of three commercial Australian Cheddar cheeses exhibit antimicrobial, antihypertensive and antioxidant properties.  相似文献   

5.
Aqueous extracts obtained from cell suspension cultures of Centaurea calcitrapa were used as proteolytic additive in the manufacture of a commercial bovine cheese, coagulated with animal rennet and typically ripened for 28 d. The cheese was assessed in comparison to standard cheese for two levels of addition of said extract, viz. 0.61 and 1.22 mg of total protein mL−1. The qualitative and quantitative evolutions of the nitrogen fractions were monitored in the experimental cheeses throughout the whole ripening period. In general, the chemical compositions of the cheeses were different depending on the amount of extract used, but no significant differences could be detected in the ripening index. With regard to electrophoretic profiles, the two types of cheese could be distinguished until up to ca. 7 d of ripening, but differences did essentially vanish by 28 d.  相似文献   

6.
《International Dairy Journal》2005,15(6-9):537-545
Economic consequences of the cheese making process are illustrated through several sample calculations concerning processing of whey in relation to cheese making throughput and several whey processing alternatives. Small cheese plants with daily milk throughput of approximately 100 000 kg cannot economically justify the capital for water removal equipment. For small plants that have to convert whey to a dry product, alternatives include pre-concentrating with a reverse osmosis unit or a small plate evaporator and drying on a double roller dryer. The economics are evaluated at several price levels. At the upper scale of cheese plant size (2–3 million kg d−1 of milk), the investment for whey processing is about half the total investment. Cash flows are calculated for electricity, natural gas and whey powder prices. Increased investment for further processing into whey protein concentrate and dried whey solubles or lactose is evaluated at several price levels.  相似文献   

7.
Phenotypic and genotypic methods were used to identify filamentous fungi that characterize traditional Italian Fossa cheese and its ripening environment. After ageing for 60 days at a dairy, it was ripened for an additional three months in a pit. In the fully ripened cheese, moulds ranged from 3 to 3.4 log cfu g?1 and Penicillium was the prevalent species. Pit environmental fungi ranged from 530 to 750 cfu m?3 (air) and from 130 to 340 cfu cm?2 (surfaces). The dominant pit strains were Alternaria spp., Aspergillus spp., Cladosporium spp. and Penicillium spp. Phylogenetic analyses of 18S rRNA gene and ITS1-5.8S-ITS2 regions highlighted Penicillium camemberti, Aspergillus nidulans and Aspergillus versicolor as traceable species occurring in both the cheese and pit environment, suggesting their involvement in the development of typical Fossa cheese characteristics. This approach may be used for the identification of microflora on other cheese varieties to better understand the fungal contribution in cheese ripening.  相似文献   

8.
The possibility to apply UV-C light technology to control surface contamination and extend the shelf-life of Fiordilatte was investigated. First, cheese was inoculated with Pseudomonas spp., exposed to UV-C light for increasing time up to 750 s to estimate the antimicrobial efficacy of the treatments. UV-C light penetration depth in Fiordilatte was also evaluated. Then, a shelf-life test was carried out on samples exposed to 0.1, 0.6, 1.2 and 6.0 kJ/m2 UV-C light, compared to untreated control cheese. The samples were packaged with brine, stored at 9 °C and analyzed for microbial growth, sensory quality and pH. A germicidal effect of about 1–2 log cycles on Pseudomonas spp. and Enterobacteriaceae was observed during storage. UV-C light did not promote changes in terms of color, texture and surface appearance. With a minimum transmittance inside the product, this treatment showed an interesting surface microbial decontamination that prolonged cheese shelf-life.Industrial relevanceConsidering that dairy industry represents one of the most important components of the Italian food system, the present work focused on the utilization of UV-C light to preserve one of the most important milk-derived Italian fresh cheese, Fiordilatte, which totalized a consumption of about 20 kg per capita per year in the world. Interesting results were recorded on treated samples, above all at specific UV-C light fluence values (6 kJ/m2). The control of microbial proliferation in these treated samples allowed prolonging shelf-life by 80% compared to untreated cheese. The technique is very rapid and simple to be scaled up; after proper optimization of light parameters, it could be applied at industrial level to prevent surface post-process contamination of Fiordilatte that generally represents the main factor responsible for product deterioration and its short shelf-life.  相似文献   

9.
《International Dairy Journal》2005,15(6-9):733-740
Fat-derived flavour compounds in four different batches of Gouda cheese were monitored over 2 years of ripening. The total free fatty acid (FFA) concentrations increased from 200–400 to 700–1200 mg kg–1 dry matter, in a fairly linear manner. Long-chain FFAs were predominant in the curds, but relatively more short and intermediate chain fatty acids were released during ripening. The production of δ-lactones was rapid initially, but reached a plateau at 55 mg kg–1 dry matter in about 20 weeks. The production of γ-lactones was slower and also decreased, but was noticeable over a longer time, giving 5.5 mg kg–1 dry matter in 90 weeks. Ethyl ester formation varied substantially. Ketone levels increased only very slightly during ripening; long chain alcohols and aldehydes were not found. Some individual FFAs and lactones exceeded reported flavour thresholds, and are expected to influence the flavour of Gouda cheese.  相似文献   

10.
Lipolysis during cheese ripening is usually assessed by the accumulation of free fatty acids (FFA). An assay to determine total lipolytic activity present in a cheese during ripening was established. Finely grated cheese (1 g) was directly incubated with trivalerin (204 mg) as a substrate at 35 °C for 4 h. Free valeric acid was extracted and quantified by gas chromatography. The assay was linear with time up to 24 h and up to 0.11 Lipase Units g−1 cheese. The total amount of lipolytic activity determined with this assay was consistent with the total amount of FFA present in 5 types of cheese. In Idiazabal cheese samples manufactured with or without lipase added, the total lipolytic activity determined during ripening remained constant up to 6 months of ripening. In addition to trivalerin, other possible substrates investigated were triolein, triundecanoin and the endogenous butyric acid-containing triacylglycerols present in the cheese sample. Activities measured with these substrates were considerably lower than values obtained with trivalerin due to the high levels of oleic acid present in cheese, or to difficulties in mixing triundecanoin (solid at 35 °C) with the grated cheese sample. Endogenous triacylglycerols gave increasingly lower activity values as ripening time progressed due to substrate depletion.  相似文献   

11.
《International Dairy Journal》2003,13(2-3):221-230
The physico-chemical characteristics, proteolysis (classical nitrogen fractions, caseins and their degradation products and free amino acids), and lipolysis (fat acidity and free fatty acids) were studied throughout the ripening of three batches of Babia-Laciana cheese, a Spanish traditional variety made from raw goats’ milk. The main compositional characteristics of this cheese at the end of the ripening are its high content of total solids (TS) (78.0±2.4 g 100 g−1 of cheese) and fat (61.1±1.2 g 100 g−1 of TS), the presence of residual lactose (1.6±0.8 g 100 g−1 of TS) and its low content of sodium chloride (1.1±0.7 g 100 g−1 of TS) and ash (2.8±0.5 g 100 g−1 of TS). Its pH values (4.44±0.72) are extraordinarily low. The evolution and final values of the different nitrogen fractions show that this cheese undergoes a very slight proteolysis, a fact which was corroborated when the caseins and their degradation products were quantified: β-casein did not undergo any modification throughout ripening, while only 21% of the αs-caseins were degraded. Free amino acids content increased by a factor of about 7 throughout ripening, resulting in a high content of γ-amino butyric acid and a low content of glutamic acid at the end of the process. Fat acidity increased very slightly, approximately 4.5 times, during ripening, reaching final values of 3.5±2.2 mg KOH g−1 of fat. The total free fatty acids content showed a similar evolution to fat acidity. At the end of the ripening process, the main free fatty acid was C18:1, followed by C16 and C10.  相似文献   

12.
Activation energy of flow (Ea) between 30 and 44 °C was calculated from temperature sweeps of cheeses with contrasting characteristics to determine its usefulness in predicting rheological behavior upon heating. Cheddar, Colby, whole milk Mozzarella, low-moisture part-skim Mozzarella, Parmesan, soft goat, and Queso Fresco cheeses were heated from 22 to 70 °C, and Ea was calculated from the resulting Arrhenius plots. Protein and moisture content were highly correlated with Ea. The Ea values for goat cheese and Queso Fresco, which did not flow when heated, were between 30 and 60 kJ mol?1. Cheddar, Colby, and the Mozzarellas did flow upon heating, and their Ea values were between 100 and 150 kJ mol?1. Parmesan, the hardest cheese, flowed rapidly with heat and had an Ea > 180 kJ mol?1. Ea provides an objective means of quantitating the flow of cheese, and together with elastic modulus and viscous modulus provides a picture of the behavior of cheese as it is heated.  相似文献   

13.
《International Dairy Journal》2000,10(5-6):383-389
The mesophilic lactobacilli colonizing Fiore Sardo ewe's milk cheese were characterized. They seemed to be the dominant non-starter lactic acid bacteria composing its natural microflora, with a viable cell number varying from 105 CFU g−1 (1-day-old cheese) to 108 CFU g−1 (30-day-old cheese) and then slowly decreasing up to 104 CFU g−1 after 7 months’ ripening. Considering the relevance of mesophilic lactobacilli in affecting the cheese ripening, a PCR-based taxonomic identification of the Lactobacillus species isolated was performed. Cheese samples were collected from 3 farms and 457 isolates from cheeses at different ripening times were analysed with species-specific primers for L. plantarum, L. casei group, L. paracasei, L. casei, L. rhamnosus, L. pentosus, L. paraplantarum, L. curvatus, L. graminis and L. sake. L. plantarum and L. paracasei were the most frequently detected species. Moreover, the development and the evolution during ripening of the facultatively heterofermentative Lactobacillus species (FHL) were different in the three batches of cheese.  相似文献   

14.
《International Dairy Journal》2007,17(10):1254-1258
The present study evaluated the use of nisin as an antimicrobial treatment for shelf-life extension of Galotyri, a Greek soft acid-curd cheese, stored aerobically under refrigeration for a period of 42 days. Three different treatments were tested: N0, control sample with no nisin added; N1, 50 IU g−1 nisin; and N2, 150 IU g−1 nisin, the latter two treatments added post-production to the Galotyri cheese. Of all microorganisms enumerated, lactobacilli, lactococci and yeasts were the groups that prevailed in cheese samples, irrespective of antimicrobial treatment. Based primarily on sensory evaluation (appearance and taste) and a microbiological acceptability limit for yeasts (5 log cfu g−1), the use of nisin treatments extended the shelf-life of fresh Galotyri cheese stored at 4 °C by ca. 7 days (N1) and 21 days (N2) with cheese maintaining good sensory characteristics.  相似文献   

15.
Commercial samples of fresh and mature Halloumi cheeses made from ovine or bovine milk were studied in order to establish their chemical, microbiological and sensory characteristics. Significant differences were observed between the two types of Halloumi cheese both when fresh and mature. The free volatile fatty acid (FVFA) content of the cheeses increased with maturation from 483 to 1356 mg kg−1 for the ovine product, but lower values (380–1248 mg kg−1) were found in the bovine cheese. During maturation for 40 days, Enterococcus faecium, which dominated the microflora of fresh ovine cheese, was replaced by lactobacilli, including a new species, Lactobacillus cypricasei, which was not found in the bovine samples. Fewer than 100 cfu g−1 lactic acid bacteria (LAB) were present in the fresh bovine cheeses, but a microflora dominated by lactobacilli developed with time. Yeast counts in the mature ovine and bovine cheeses reached 2.3–2.8×105 cfu g−1 and, as some of the yeasts were proteolytic and/or lipolytic, it was assumed that they were having a positive impact of the flavour of the cheeses. The sensory panel distinguished significant differences in texture and flavour between the fresh and mature samples of both ovine and bovine cheeses and, overall, there was a significant preference for the ovine brand.  相似文献   

16.
《International Dairy Journal》2005,15(6-9):893-900
The combined effect of high-pressure (HP) treatment and bacteriocin-producing lactic acid bacteria (BP-LAB) on the survival of Listeria monocytogenes Scott A in cheeses made from raw milk that was inoculated with the pathogen at 4.80 log cfu mL−1, a commercial starter and one of seven strains of BP-LAB was investigated. On day 3, the counts of L. monocytogenes were 7.03 log cfu g−1 in a control cheese (without BP-LAB, not HP treated), 6.06–6.74 log cfu g−1 in cheeses with BP-LAB, 6.13 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 300 MPa, 2.01 log cfu g−1 in a cheese without BP-LAB and treated on day 2 at 500 MPa, 3.83–5.43 log cfu g−1 in cheeses with BP-LAB and treated on day 2 at 300 MPa, and 1.81 log cfu g−1 or less in cheeses with BP-LAB and treated on day 2 at 500 MPa. HP treatment was more effective on day 51 than on day 2.  相似文献   

17.
Cells of Lactococcus lactis were permeabilized by perturbing the membrane structure through the delipidating action of n-butanol to an extent that allowed normally excluded peptidase substrates to enter the cells and be accessible to intracellular enzymes. The degree of permeabilization of cells depended on the concentration of the solvent used, the duration of the treatment, the density of the cell suspension, pH and temperature. This was indicated by the optimum or maximum activities of the intracellular peptidases aminopeptidase N and aminopeptidase X. The possible usefulness of permeabilized cells for cheese-ripening studies was demonstrated with cells that were treated with 5 ml L−1 n-butanol at pH 6.5 and 25 °C using a mixture of chymosin-generated primary cheese peptides as substrate. Production of amino acids could be correlated with conversion of peptides that had entered the permeabilized cells and reflected the course of amino acid production in cheese.  相似文献   

18.
A preparation of exogenous alkaline phosphatase (ALP), containing 17,500 mU L−1, was added to pasteurized milk (PM) to study its role in cheese ripening. Three miniature Cheddar-type cheeses were made from PM containing no added ALP (control), PM plus 23 μL ALP (T1), to give ALP concentration similar to that in raw milk, and PM plus 46 μL ALP (T2). Milk, after addition of ALP, was held at 6 °C for 12 h before cheese manufacture and the experiment was replicated three times. The control, T1 and T2 milks contained ALP activity of 415, 2391 and 4705 mU L−1, respectively. The addition of ALP to PM caused significant (P<0.05) changes in moisture content of miniature cheeses but did not cause any changes in protein content. Levels of water-soluble N during ripening of the cheeses were similar for control, T1 and T2 cheeses. The concentration of amino acids was not affected by the level of ALP present in milk. However, reversed-phase HPLC showed differences in the peptide patterns of control, T1 and T2 cheeses, suggesting a role of ALP in cheese ripening. The results suggest that ALP may play a role in cheese ripening, but further studies are needed to confirm this.  相似文献   

19.
Cheddar cheese mixed starter cultures containing exopolysaccharide (EPS)-producing strains of Lactococcus lactis subsp. cremoris (Lac. cremoris) were characterized and used for the production of reduced-fat Cheddar cheese (15% fat). The effects of ropy and capsular strains and their combination on cheese production and physical characteristics as well as composition of the resultant whey samples were investigated and compared with the impact of adding 0.2% (w/v) of lecithin, as a thickening agent, to cheese milk. Control cheese was made using EPS-non-producing Lac. cremoris. Cheeses made with capsular or ropy strains or their combination retained 3.6–4.8% more moisture and resulted in 0.29–1.19 kg/100 kg higher yield than control cheese. Lecithin also increased the moisture retention and cheese yield by 1.4% and 0.37%, respectively, over the control cheese. Lecithin addition also substantially increased viscosity, total solid content and concentrating time by ultra-filtration (UF) of the whey produced. Compared with lecithin addition, the application of EPS-producing strains increased the viscosity of the resultant whey slightly, while decreasing whey total solids, and prolonging the time required to concentrate whey samples by UF. The amount of EPS expelled in whey ranged from 31 to 53 mg L−1. Retention of EPS-producing strains in cheese curd was remarkably higher than that of non-producing strains. These results indicate the capacity of EPS-producing Lac. cremoris for enhanced moisture retention in reduced-fat Cheddar cheese; these strains would be a promising alternative to commercial stabilizers.  相似文献   

20.
The contributions of the coagulant Cynara cardunculus and of the microflora of raw milk to the volatile-free fatty acid profile of Serra da Estrela cheese were evaluated. The experimental design included both a model system and, dual cheeses. The study in the model system showed that isovaleric acid was the predominant volatile compound after 7 d of ripening. The systems inoculated with Enterococcus faecium produced the highest amount of this volatile (ca. 135.8 mg kg−1 curd), while those inoculated with Lactobacillus plantarum produced the least (21.4 mg kg−1 curd); Lactococcus lactis produced moderate amounts (ca. 34.2 mg kg−1 curd) but a total amount of volatile-free fatty acids similar to those found in control samples. This is considered advantageous since this volatile fatty acid confers a harsh, piquant, mature flavour to cheese, coupled with the realisation that excess volatiles may result in off-flavours. The addition of cultures in experimental cheeses helped reduce ripening time to about one half. Inclusion of Lb. plantarum led to cheeses containing the highest amounts of volatiles, and exhibiting an aroma closest to that of typical Serra da Estrela cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号