首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The method of fundamental solutions (MFS) is applied to solve linear elastic fracture mechanics (LEFM) problems. The approximate solution is obtained by means of a linear combination of fundamental solutions containing the same crack geometry as the actual problem. In this way, the fundamental solution is the very same one applied in the numerical Green's function (NGF) BEM approach, in which the singular behavior of embedded crack problems is incorporated. Due to severe ill-conditioning present in the MFS matrices generated with the numerical Green's function, a regularization procedure (Tikhonov's) was needed to improve accuracy, stabilization of the solution and to reduce sensibility with respect to source point locations. As a result, accurate stress intensity factors can be obtained by a superposition of the generalized fundamental crack openings. This mesh-free technique presents good results when compared with the boundary element method and estimated solutions for the stress intensity factor calculations.  相似文献   

2.
A computational model based on the numerical Green's function (NGF) and the dual reciprocity boundary element method (DR-BEM) is presented for the study of elastodynamic fracture mechanics problems. The numerical Green's function, corresponding to an embedded crack within the infinite medium, is introduced into a boundary element formulation, as the fundamental solution, to calculate the unknown external boundary displacements and tractions and in post-processing determine the crack opening displacements (COD). The domain inertial integral present in the elastodynamic equation is transformed into a boundary integral one by the use of the dual reciprocity technique. The dynamic stress intensity factors (SIF), computed through crack opening displacement values, are obtained for several numerical examples, indicating a good agreement with existing solutions.  相似文献   

3.
The use of Green's functions has been considered a powerful technique in the solution of fracture mechanics problems by the boundary element method (BEM). Closed‐form expressions for Green's function components, however, have only been available for few simple 2‐D crack geometry applications and require complex variable theory. The present authors have recently introduced an alternative numerical procedure to compute the Green's function components that produced BEM results for 2‐D general geometry multiple crack problems, including static and dynamic applications. This technique is not restricted to 2‐D problems and the computational aspects of the 3‐D implementation of the numerical Green's function approach are now discussed, including examples. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In this work, the structural integrity of the critical components of the fast breeder reactor (FBR) that are subjected thermal striping is assessed using a fracture mechanics approach based on linear elastic fracture mechanics (LEFM). The structural integrity is assessed in terms of the actual life of the component for a particular difference between the hot and cold liquid temperatures at the critical mixing velocities. A generalized procedure is attempted for the computation of fatigue life. It is demonstrated in this work that the analysis procedure adopted is computationally very efficient. Green's function method is used for transient mode I crack propagation analysis. An inherent parallelism in the method is exploited for computational efficiency. A distributed computing environment is, therefore, used to demonstrate the effectiveness of Green's function method for crack propagation analysis for the kind of problem solved in this work. A simple idealization in the form of flat plate geometry is used in a numerical example to show the computational efficiency. The method shows a good scale‐up justifying the benefit of using a distributed computing environment given a large amount of input data for the thermal striping problem.  相似文献   

5.
In this paper we give the theoretical foundation for a dislocation and point-force-based approach to the special Green's function boundary element method and formulate, as an example, the special Green's function boundary element method for elliptic hole and crack problems. The crack is treated as a particular case of the elliptic hole. We adopt a physical interpretation of Somigliana's identity and formulate the boundary element method in terms of distributions of point forces and dislocation dipoles in the infinite domain with an elliptic hole. There is no need to model the hole by the boundary elements since the traction free boundary condition there for the point force and the dislocation dipole is automatically satisfied. The Green's functions are derived following the Muskhelishvili complex variable formalism and the boundary element method is formulated using complex variables. All the boundary integrals, including the formula for the stress intensity factor for the crack, are evaluated analytically to give a simple yet accurate special Green's function boundary element method. The numerical results obtained for the stress concentration and intensity factors are extremely accurate. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The most accurate boundary element formulation to deal with fracture mechanics problems is obtained with the implementation of the associated Green's function acting as the fundamental solution. Consequently, the range of applications of this formulation is dependent on the availability of the appropriate Green's function for actual crack geometry. Analytical Green's functions have been presented for a few single crack configurations in 2-D applications and require complex variable theory. This work extends the applicability of the formulation through the introduction of efficient numerical means of computing the Green's function components for single or multiple crack problems, of general geometry, including the implementation to 3-D problems as a future development. Also, the approach uses real variables only and well-established boundary integral equations.  相似文献   

7.
A plane electro-elastostatic problem involving arbitrarily located planar stress free cracks which are electrically semi-permeable is considered. Through the use of the numerical Green's function for impermeable cracks, the problem is formulated in terms of boundary integral equations which are solved numerically by a boundary element procedure together with a predictor–corrector method. The crack tip stress and electric displacement intensity factors can be easily computed once the boundary integral equations are properly solved.  相似文献   

8.
This study focuses on the application of boundary element methods for linear fracture mechanics of two-dimensional piezoelectric solids. A complete set of piezoelectric Green's functions, based on the extended Lekhnitskii's formalism and distributed dislocation modeling, are presented. Special Green's functions are obtained for an infinite medium containing a conducting crack or an impermeable crack. The numerical solution of the boundary integral equation and the computation of fracture parameters are discussed. The concept of crack closure integral is utilized to calculate energy release rates. Accuracy of the boundary element solutions is confirmed by comparing with analytical solutions reported in the literature. The present scheme can be applied to study complex cracks such as branched cracks, forked cracks and microcrack clusters.  相似文献   

9.
Part 1 of this paper reports on the formulation of an advanced boundary—integral equation model for fracture mechanics analysis of cracked plates, subject to elastoplastic behaviour or other, related body force problems. The basis of this formulation contrasts with other BIE elastoplastic formulations in the use of the Green's function for an infinite plane containing a stress free crack. This Green's function formulation assures that the total elastic strain field for the crack problem is accurately imbedded in the numerical model. The second part of this paper reports on the numerical implementation of this algorithm, as currently developed. The anelastic strain field (residual strains, thermal strains, plastic strains, etc.) is approximated as piecewise constant, while the boundary data is modelled with linear interpolations. An iteration solution scheme is adopted which eliminates the need for recalculation of the BIE matrices. The stability and accuracy of the algorithm are demonstrated for an uncracked, notch geometry, and comparison to finite element results is made for the centre-cracked panel. The data shows that even the crude plastic strain model applied is capable of excellent resolution of crack tip plastic behaviour.  相似文献   

10.
A plane electroelastic problem involving planar cracks in a piezoelectric body is considered. The deformation of the body is assumed to be independent of time and one of the Cartesian coordinates. The cracks are traction free and are electrically either permeable or impermeable. Numerical Green's functions which satisfy the boundary conditions on the cracks are derived using the hypersingular integral approach and applied to obtain a boundary integral solution for the electroelastic crack problem considered here. As the conditions on the cracks are built into the Green's functions, the boundary integral solution does not contain integrals over the cracks. It is used to derive a boundary element procedure for computing the crack tip stress and electrical displacement intensity factors.  相似文献   

11.
In this paper, automated simulation of multiple crack fatigue propagation for two-dimensional (2D) linear elastic fracture mechanics (LEFM) problems is developed by using boundary element method (BEM). The boundary element method is the displacement discontinuity method with crack-tip elements proposed by the author. Because of an intrinsic feature of the boundary element method, a general growth problem of multiple cracks can be solved in a single-region formulation. In the numerical simulation, for each increment of crack extension, remeshing of existing boundaries is not necessary. Local discretization on the incremental crack extension is performed easily. Further the new adding elements and the existing elements on the existing boundaries are employed to construct easily the total structural mesh representation. Here, the mixed-mode stress intensity factors are calculated by using the formulas based on the displacement fields around crack tip. The maximum circumferential stress theory is used to predict crack stability and direction of propagation at each step. The well-known Paris’ equation is extended to multiple crack case under mixed-mode loadings. Also, the user does not need to provide a desired crack length increment at the beginning of each simulation. The numerical examples are included to illustrate the validation of the numerical approach for fatigue growth simulation of multiple cracks for 2D LEFM problems.  相似文献   

12.
Green's functions are important mathematical tools in mechanics and in other parts of physics. For instance, the boundary element method needs to know the Green's function of the problem to compute its numerical solution. However, Green's functions are only known in a limited number of cases, often under the form of complex analytical expressions. In this article, a new method is proposed to calculate Green's functions for any linear homogeneous medium from a simple finite element model. The method relies on the theory of wave propagation in periodic media and requires the knowledge of the finite element dynamic stiffness matrix of only one period. Several examples are given to check the accuracy and the efficiency of the proposed numerical Green's function.  相似文献   

13.
This paper introduces the extension of the numerical Green's function approach for elastodynamic fracture mechanics problems. The formulation uses the hyper-singular boundary integral equation to obtain the fundamental solution for the cracked unbounded medium. The procedure is general and can be applied to multiple crack problems of general geometry. Applications to time harmonic and transient (through inverse numerical Fourier and Laplace transforms) stress intensity factor (SIF) computations are presented and compared with other numerical and analytical results, showing the good accuracy of the present strategy for these kinds of problems.  相似文献   

14.
This paper develops an efficient numerical approach to predict deterministic size effects in structures made of quasi-brittle materials using the scaled boundary finite element method (SBFEM). Depending on the structure’s size, two different SBFEM-based crack propagation modelling methodologies are used for fracture analyses. When the length of the fracture process zone (FPZ) in a structure is of the order of its characteristic dimension, nonlinear fracture analyses are carried out using the finite element-SBFEM coupled method. In large-sized structures, a linear elastic fracture mechanics (LEFM)-based SBFEM is used to reduce computing time due to small crack propagation length required to represent the FPZ in an equivalent nonlinear analysis. Remeshing is used in both methods to model crack propagation with crack paths unknown a priori. The resulting peak loads are used to establish the size effect laws. Three concrete structures were modelled to validate the approach. The predicted size effect is in good agreement with experimental data. The developed approach was found more efficient than the finite element method, at least in modelling LEFM problems and is thus an attractive tool for predicting size effect.  相似文献   

15.
16.
Thermomagnetoelectroelastic problems for various defects embedded in an infinite matrix are considered in this paper. Using Stroh's formalism, conformal mapping, and perturbation technique, Green's functions are obtained in closed form for a defect in an infinite magnetoelectroelastic solid induced by the thermal analog of a line temperature discontinuity and a line heat source. The defect may be of an elliptic hole or a Griffith crack, a half-plane boundary, a bimaterial interface, or a rigid inclusion. These Green's functions satisfy the relevant boundary or interface conditions. The proposed Green's functions can be used to establish boundary element formulation and to analyzing fracture behaviour due to the defects mentioned above.  相似文献   

17.
A model of 2D SH ultrasonic nondestructive testing for interior strip-like cracks near a non-planar back surface in a thick-walled elastic solid is presented. The model employs a Green's function to reformulate the 2D antiplane wave scattering problem as two coupled boundary integral equations (BIE): a displacement BIE for the back surface displacement and a hypersingular traction BIE for the crack opening displacement (COD). The integral equations are solved by performing a boundary element discretization of the back surface and expanding the COD in a series of Chebyshev functions which incorporate the correct behaviour at the crack edges. The transmitting ultrasonic probe is modelled by prescribing the traction underneath it, enabling the consequent calculation of the incident field. An electromechanical reciprocity relation is used to model the action of the receiving probe. A few numerical examples which illustrate the influence of the non-planar back surface are given.  相似文献   

18.
19.
This article explores the rich heritage of the boundary element method (BEM) by examining its mathematical foundation from the potential theory, boundary value problems, Green's functions, Green's identities, to Fredholm integral equations. The 18th to 20th century mathematicians, whose contributions were key to the theoretical development, are honored with short biographies. The origin of the numerical implementation of boundary integral equations can be traced to the 1960s, when the electronic computers had become available. The full emergence of the numerical technique known as the boundary element method occurred in the late 1970s. This article reviews the early history of the boundary element method up to the late 1970s.  相似文献   

20.
The boundary-integral equation formulation for two-dimensional, planar fracture mechanics based on the use of a special Green's function forms the basis of this analytical paper. The Green's function method is extended to problems of anelastic strain distributions (e.g. elastoplasticity, thermal gradients, residual strains) through a volume (area) integral. The role of the elastic Green's function for the crack problem on the distribution of elastoplastic strains is reviewed. Further, new analytical results for elastic stress intensity factor models for the residual strain and thermal gradient problems are presented. Part 2 of this paper outlines the numerical solution strategy and results for several test problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号