首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 489 毫秒
1.
For oil production fields, there is a need for downhole measurements of the gas/water/oil multiphase flow. In extreme conditions a relatively simple, robust, and non-intrusive system will be appropriate. A measurement setup that combines multiple gamma beam (MGB) and dual modality densitometry (DMD) measurements, would be able to determine the gas volume fraction (GVF) independently of the flow pattern, and monitor changes in water salinity. MGB measurements of gamma-ray transmission along multiple sections across the oil pipe will provide information on the flow pattern. Whereas the DMD principle will give information on changes in salinity from a combination of transmission and scattering gamma-radiation measurements. In this work we present the results from MGB and DMD measurements of a multiphase flow with high-speed gamma-ray tomograph measurements as reference for the flow pattern. The MGB measurements should enable us to distinguish between stratified or wavy/slug and annular or slug flow. Flow patterns with several minor components distributed evenly over the measurement cross section, like bubble flow, will be interpreted as homogeneous flow. The DMD measurements can be used to monitor salinity changes of the water component for intervals where the GVF is low and the water cut of the liquid is high. Combined with other gauges for water cut measurements, the MGB and DMD measurement setup should improve the multiphase flow measurements, and enable increased oil/gas recovery and production water monitoring.  相似文献   

2.
Dual energy gamma densitometry and 3-way partial least squares regression were applied to quantify the total volume fractions and improve flow regime identification in multiphase flow. Multiphase flow experiments were carried out with formation water, crude oil and gas from different North Sea gas fields in Statoil׳s High Pressure Multiphase Flow Loop in Porsgrunn, Norway. Four different flow regimes were investigated (stratified wavy, slug, dispersed and annular). A traversable dual energy gamma densitometer was used to measure the fluid densities in the pipe. Partial least squares regression was previously applied to identify multiphase flow regimes and quantify volume fractions of gas, oil and water. That study showed promising results for flow regime identification but the predictions of the total volume fractions were not acceptable. In this study a new method combining gamma densitometry and 3-way partial least squares regression was applied in order to improve the quantitative estimation of the total volume fractions gained in the previous study. The proposed 3-way regression approach allows prediction of the total volume fractions directly using one model instead of multiple models which was reported earlier. The improved quantification of the volume fractions of gas, oil and water was used to improve the flow regime identification plots and increase the interpretability.The new 3-way prediction results for the volume fractions were significantly better than what was found earlier based on individual PLS models. The root mean square error of prediction for gas, oil and water from the 3-way PLS models were 4.1 %, 4.3 % and 4.6% respectively. All models reported were validated based on independent data (test set validation).  相似文献   

3.
The problem of how to accurately measure the flow rate of oil–gas–water mixtures in a pipeline remains one of the key challenges in the petroleum industry. This paper proposes a new methodology for identifying flow regimes and predicting volume fractions in gas-oil-water multiphase systems using dual energy fan-beam gamma-ray attenuation technique and artificial neural networks. The novelty of this study in comparison with previous works, is using just 4 extracted features (photo peaks of 241Am and 137Cs in 2 detectors) from the gamma ray spectrums instead of using the whole gamma ray spectrum, which reduces the undesired noises and also improves the speed of recognition in real situations. Radial basis function was used for developing the neural network model in MATLAB software in order to classify the flow patterns (annular, stratified and homogenous) and predict the value of volume fractions. The ideal and static theoretical models for flow regimes have been developed using MCNP-X code. The proposed networks could correctly recognize all the three different flow regimes and also determine volume fractions with mean absolute error of less than 5.68% according to the recognized regime.  相似文献   

4.
The first part of this paper reports on an automated facility designed to investigate the influence of disturbed flows in pipes on the shift of the error curves of gas flowmeters in situ. This facility can be equipped with several pipe configurations (single and double bends, convergent and divergent sections, straight pipes up to 40 diameters in length etc.) as well as with various types of flow conditioners. It works with atmospheric air at flowrates of up to 5500 m3/h. A two-component semiconductor Laser Doppler Anemometer (LDA) is used to measure the spatial velocity and turbulence fields of the flow along the entire cross section in front of the flowmeter to be investigated. More than 150 velocity distributions have been determined for different pipe configurations at several flowrates and data have been collected to describe the corresponding flowmeter's behaviour. Some typical velocity profiles for the most usual pipe elements and flow conditioners are shown.

The second part of the publication, which will be presented in the following, compares the changes in the meter behaviour with the specific development of the flow characteristics downstream of the pipe configurations investigated. The model found to explain these metering effects will be described, evaluated and verified.  相似文献   


5.
The in-situ visualization of flow in the opaque pipes and annulus is a major cause of concern for studying hole cleaning issues and multiphase flow patterns in the oil and gas industry. Electrical resistance tomography is one of the latest non-intrusive technologies, which can provide real-time cross-sectional images of multiphase flow patterns in opaque pipes and annulus. Most studies conducted using the ERT system in the area of multi-phase flow is limited to opaque pipes and two-phase systems. Therefore, in this work is the suitability of the ERT technology has been tested to examine the three-phase flow (air-liquid-solid) and solids cuttings transport in a horizontal flow loop annulus system at wide operating conditions. The effect of different eccentricities (0–50%), inner pipe rotation speed (0–120 RPM), liquid flow rates (164–373 kg/min) and air input pressure (0–0.8 bar) on solids concentration in the specified ERT zone was examined using ERT concentration tomograms.  相似文献   

6.
Phase-isolation is a novel ever-increasing multiphase separation technology, which can facilitate the multiphase fluid flowing concurrently with a substantially clear interface between two phases, and the phenomenon is promisingly employed for the separation and measurement of multiphase flows. Phase-isolation can be implemented by different kinds of lateral forces, of which the centrifugal force induced by the swirlers is the most convenient method. The radial pressure drop between pipe wall and pipe center, and the axial pressure drop along the pipe wall occurs at the downstream of the swirler. In the paper, the coupling model of dual differential pressure (DDP) including the radial-axial differential pressure and radial-radial differential pressure was built employing centrifugal phase-isolation for oil-water two-phase flow, and the theoretical measurement models were validated by our experimental data. At certain cross sections downstream of the swirler, the deviations between theoretical and experimental result of the volumetric oil fraction λo and mass flowrate Qm were below ±7.16% and ±1.14% respectively when the radial-axial differential pressure was adopted, while the deviations between theoretical and experimental result of λo and Qm were below ±6.91% and ±1.13% respectively using the radial-radial differential pressure. The acceptable deviation indicates that the DDP model can be the reference for the analysis and application of two-phase flow in the academic research and practical engineering.  相似文献   

7.
A large campaign of multiphase experiments using formation water, a North Sea crude oil and a blend of gas produced from different North Sea gas fields was performed in the Porsgrunn Multiphase Flow Loop. The tests were performed under realistic field conditions (p=100 bar and ). Different multiphase flow patterns such as waves and slugs were observed in the experiments. At high pressure conditions it is often difficult to distinguish between these types of flows due to considerable dispersions between the fluid phases.A traversable dual-energy gamma instrument was used to measure phase fractions at different positions at 7 Hz. Careful data analysis was needed to obtain the relevant data from the noisy measurements. Data analysis techniques for three-phase flow were developed and tested against calibration data from single-phase and two-phase flow.In addition it was shown that the averaged density data from the traversable gamma instrument compared favourably to density measurements by a calibrated stationary single-energy gamma instrument.However the traversable densitometer gave much more additional information compared with the single-energy instrument since the transient phase fraction for all three phases could be measured at different positions over the cross section of the pipeline. This information allowed the definite determination of the flow pattern.  相似文献   

8.
多相流分相含率检测   总被引:2,自引:0,他引:2  
介绍了基于双能射线对油气水多相流分相含率的测量机理及系统构成 ,通过对射线穿过原油的透射计数 ,并对各种误差进行补偿、修正 ,从而实现对多相流分相含率的在线测量  相似文献   

9.
In this work, a comparison of Particle Image Velocimetry (PIV) and Laser Doppler Anemometry (LDA) measurement methods was made applied to oil–water two-phase flow in a horizontal pipe. The experiments were conducted in a 15 m long, 56 mm diameter stainless steel pipe using Exxsol D60 oil (density 790 kg/m3 and viscosity 1.64 mPa s) and water (density 996 kg/m3 and viscosity 1.0 mPa s) as test fluids. The experiments were performed at different mixture velocities and water cuts. Mixture velocity and water cut vary up to 1.06 m/s and 0.75, respectively. The instantaneous local velocities were measured using PIV and LDA, and based on the instantaneous local velocities mean velocities and turbulence profiles are estimated. The measurements are performed in the vertical plane through the pipe center. A double-pulsed Nd:yttrium aluminium garnet (YAG) laser and a high-speed camera with 1260×1024 px resolution (1.3 Mpx) were used for the PIV measurements. The LDA set-up is a two-colour backscatter system with 3 W Argon-Ion Laser. The time averaged cross-sectional distributions of oil and water phases were measured with a traversable gamma densitometer. The measured mean axial velocity and turbulence profiles using PIV were observed to compare favourably well with LDA measurements. Nevertheless, the PIV measurements are more sensitive for optical disturbances in the dispersed region close to the oil–water interface. Hence, this region cannot be confidently analyzed using PIV, whereas LDA offers full-field measurements even at higher mixture velocities.  相似文献   

10.
For more than a decade there has been growing interest in the use of Coriolis mass flow metering applied to two-phase (gas/liquid) and multiphase (oil/water/gas) conditions. It is well-established that the mass flow and density measurements generated from multiphase flows are subject to large errors, and a variety of physical models and correction techniques have been proposed to explain and/or to compensate for these errors. One difficulty is the absence of a common basis for comparing correction techniques, because different flowtube designs and configurations, as well as liquid and gas properties, may result in quite different error curves. Furthermore, some researchers with interests in the modelling aspects of the field may not have suitable multiphase laboratory facilities to generate their own data sets. This paper offers a small data set that may be used by researchers as a benchmark i.e. a common data set for comparing correction techniques. The data set was collected at the UK National Flow Laboratory TUV-NEL, using air and a viscous oil, and provides experimental points over a wide flow range (8:1 turndown) and with Gas Volume Fraction (GVF) values up to 60%. As a first investigation using the benchmark data set, we consider how data sparsity (i.e. the flow rate and GVF spacing in the experimental grid) affects the accuracy of a correction model. A range of neural network models are evaluated, based on different subsets of the benchmark data set. The data set and some exemplary code are provided with the paper. Additional data sets are available on a web site created to support this initiative.  相似文献   

11.
In this work, we aim to analyse the capability of using a 16-segmented Electrical Capacitance Tomography (ECT) sensor system to monitor the internal composition of a chemical process conveyor that carries crude palm oil (CPO) multiphase flow. The source used to excite the electrodes is a differential potential, instead of the conventional single potential source, in order to obtain an improved sensitivity of the sensor, especially in the central area of the pipe. This system aims to recognise the phase concentration of the flow. The attained concentration profile that is received from the capacitance measurements is capable of providing an image of the liquid and liquid mixture in the pipeline, making the separation process (between oil and liquid waste) much easier and the CPO's quality can be dependably monitored. Experimental results and analysis are presented, and the new excitation technique is shown to provide better sensor sensitivity in the central pipe area. The visualisation results deliver information regarding the flow regime and concentration distribution in a two-phase flow-rate measurement system incorporating a liquid flow-measuring device. The information obtained will assist the design of process equipment, and the verification of existing computational modelling and simulation techniques.  相似文献   

12.
Accurate measurement of multiphase flows, including gas/solids, gas/liquid, and liquid/liquid flows, is still challenging. In principle, electrical capacitance tomography (ECT) can be used to measure the concentration of solids in a gas/solids flow and the liquid (e.g., oil) fraction in a gas/liquid flow, if the liquid is non-conductive. Electrical resistance tomography (ERT) can be used to measure a gas/liquid flow, if the liquid is conductive. It has been attempted to use a dual-modality ECT/ERT system to measure both the concentration profile and the velocity profile by pixel-based cross correlation. However, this approach is not realistic because of the dynamic characteristics and the complexity of multiphase flows and the difficulties in determining the velocities by cross correlation. In this paper, the issues with dual modality ECT/ERT and the difficulties with pixel-based cross correlation will be discussed. A new adaptive multi-modality (ECT, ERT and electro-dynamic) sensor, which can be used to measure a gas/solids or gas/liquid flow, will be described. Especially, some details of the electrodynamic sensor of multi-modality system such as sensing electrodes optimum design, electrostatic charge amplifier, and signal processing will be discussed. Initial experimental results will be given.  相似文献   

13.
The online continuous measurement of multiphase flow is one of the most key technologies which influences the development of oil industry in future. A new type of multiphase meter system is developed based on the open channel flow. The test pipe of the meter is slightly slopped to make the flow pattern mainly stratified flow. Based on the study of oil and gas flow dynamics in the open channel test pipe, the liquid metering model and gas metering model are deduced to calculate the gas and the liquid flow rate, the water cut is measured online by the principle of differential pressure. This device can work online without the separation of the production fluid. By the lab test and field application test, the results of the metering system show that the liquid flow rate errors are within ±5%, the gas flow rate errors can be within ±5%, and the water cut absolute error is within ±2%, which can meet the demands of the field flow rate measurement.  相似文献   

14.
Multiphase flow metering is a major focus for oil and gas industries. The performance of a modified version of a close coupled slotted orifice plate and swirl flow meter for multiphase flow was evaluated to provide further development of a new type of multiphase flow meter. The slotted orifice provides well homogenized flow for several pipe diameters downstream of the plate. This characteristic provides a homogeneous mixture at the inlet of the swirl meter for a wide range of gas volume fractions (GVF) and flow rates. In order to evaluate the performance of the designed flow-meter, its response was investigated for varying pressures and water flow rates. The proper correlations were established to provide high accurate two-phase flow measurements. The new proposed approach provides the GVF measurement with less than ±0.63% uncertainty for GVF range from 60% to 95%.  相似文献   

15.
为减小轴流排汽缸内部损失,提高排汽缸的气动性能,以杭州汽轮机股份有限公司新开发的轴流排汽缸为研究对象,考虑末级动叶出口径向速度不均匀性对排汽缸的影响,联合末两级整圈低压级组和排缸进行了数值计算。分析了轴流排汽缸内部流动特点,并根据流场对其进行了改型优化。计算结果表明,轴流排汽缸与低压级叶片之间存在相互作用,排汽缸后部出现两个旋流方向相反的涡,并随着气流向下游扩展;通过对轴流排汽缸结构改型,静压恢复系数提高了40.7%,总压损失系数减少了31.4%。通过优化通油管道的截面形状,使静压恢复系数提高了0.13%,总压损失系数减少了2.2%,改善了排汽缸内部流动,显著提高了轴流排汽缸的气动性能。  相似文献   

16.
Capacitance sensors are widely used in multiphase flows, for example, to estimate the hold-up in a given section of the pipe, taking advantage of the different permittivity values of the two liquids. The estimation is obtained by capacitance measurements between two electrodes, flush mounted on the external surface of the experimental pipe. Usually, capacitance sensors are used to investigate flows with non-conductive fluids, but they have the possibility to work also when, for example, conductive water is used. However, the capacitance technique applied to conductive fluids develops some issues. In this paper, we present a concave electrode sensor system developed for oil/conductive-water flows. A key contribution is to propose a modelization to the problem of capacitive sensing in presence of conductive fluids, based on a new approach to the parasitic couplings outside the measurement section. Thanks to this modelization, we propose a new design method for the working frequency and the electrode measurement head.  相似文献   

17.
主动液压激波作用下管道振动控制的运动分析与试验研究   总被引:3,自引:0,他引:3  
为研究在主动液压激波作用下管道振动的动力学特性,建立流体的数学模型,设计出变频液压管网激振测试系统,用特征线法编程对激波作用下的有压脉动内流进行数值模拟。采用有限元法把管道简化为梁模型,建立考虑流固耦合的充液管道在激波作用下的振动方程,在保证特征线各断面与有限元节点重合的前提下,采用Newmark法编程将特征线法求得的流体各断面横向压力载荷施加到管道有限元的单元节点上,求得各断面处的动力响应。仿真结果表明,管道在轴向弹性支撑条件下,在激波作用下管道各断面压力和流速为简谐波,但两者呈反相关系。其横向各断面运动为简谐振动,振幅随系统压力的升高而升高,发现管道横向各断面振动波明显滞后于各断面对应的压力波,而轴向振动则由于弹簧与液体轴向力的耦合作用而出现较高的振动频率。数值模拟结果与试验结果基本比较吻合,揭示出流体动力学参数与管道振动之间的耦合关系,为激波作用下管道的二维振动特性及可控性研究提供了一些理论依据。  相似文献   

18.
This paper describes an electromagnetic flow meter for velocity profile measurement in single phase and multiphase flows with non-uniform axial velocity profiles. A Helmholtz coil is used to produce a near-uniform magnetic field orthogonal to both the flow direction and the plane of an electrode array mounted on the internal surface of a non-conducting pipe wall. Induced voltages acquired from the electrode array are related to the flow velocity distribution via variables known as ‘weight values’ which are calculated using finite element software. Matrix inversion is used to calculate the velocity distribution in the flow cross section from the induced voltages measured at the electrode array. This paper presents simulations and experimental results including, firstly the effects of the velocity profile on the electrical potential distribution, secondly the induced voltage distribution at the electrode pair locations, and thirdly the reconstructed velocity profile calculated using the weight values and the matrix inversion method mentioned above. The flow pipe cross-section is divided into a number of pixels and, in the simulations, the mean flow velocity in each of the pixels in single phase flow is calculated from the measured induced voltages. Reference velocity profiles that have been investigated in the simulations include a uniform velocity profile and a linear velocity profile. The results show good agreement between the reconstructed and reference velocity profiles. Experimental results are also presented for the reconstructed velocity profile of the continuous water phase in an inclined solids-in-water multiphase flow for which the axial water velocity distribution is highly non-uniform. The results presented in this paper are most relevant to flows in which variations in the axial flow velocity occur principally in a single direction.  相似文献   

19.
The hydraulic transport of sediments in sediment–water multiphase mixtures is an important process in nature and many industrial applications. The flows are characterized by complex transient phenomena, in which the overall system scale and the particle scale are equally important. Experimental research into dense mixture flows is focused on measurement of flowrates, differential pressures and concentrations of the suspended sediments.Concentration measurements are especially challenging in the case of coarse particles (beyond millimeter size scale) flowing in dense mixtures, limiting the range of available sensors for accurately measuring the in-situ solids concentrations. For the investigation of transient processes, a quick sensor response is required, which makes concentration measurement based on mixture conductivity an interesting option.This study is focused on combined concentration and pressure measurements in dense sediment–water mixtures with coarse particles in a vertically oriented closed conduit, using differential pressure sensors over the vertical segments and conductivity probes for measuring the mixture concentration. We experimentally investigated the dispersion process of an initially densely packed batch of sand and gravel by measuring the concentration on different segments of the conduit, resulting in data on mixture wall shear stresses for different sand and gravel mixtures and data of attenuation of concentration gradients in vertical upward and downward flow, in the conduit horizontal top section and in the centrifugal pump.We describe in the detail the sensor calibration and data processing method, giving a best practice for the use of conductivity concentration sensors in dense coarse particle mixtures, and we suggest a novel method for analysis of density wave amplification and attenuation based on concentration measurements in general, which allows for the detailed analysis of transient multiphase flow phenomena at pipe system component level.  相似文献   

20.
为了解齿轮箱内部润滑油和空气多相流瞬态流场情况,采用浸入固体法结合VOF(Volume Of Fluids)多相流模型,对超高压柱塞泵动力端齿轮箱润滑油的甩油过程进行计算流体动力学仿真分析。通过分析得到齿轮箱内润滑油分布情况、齿轮表面润滑油速度和体积分数,以及截面压力,进而可以对齿轮箱内部润滑油飞溅润滑过程进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号