首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Voltage-sensitive sodium channels encoded by a full-length cDNA corresponding to the Vssc1 gene of the house fly (Musca domestica) were expressed in Xenopus laevis oocytes either alone or in combination with the tipE gene product of Drosophila melanogaster and were characterized by two-electrode voltage clamp. Vssc1 cRNA alone produced very small (50-150 nA) sodium currents, whereas the combination of Vssc1 and tipE cRNAs produced robust (0.5-3 microA), rapidly inactivating sodium currents. The pyrethroid insecticide cismethrin prolonged the sodium current carried by Vssc1/tipE sodium channels during a depolarizing pulse and induced a tail current after repolarization. The Vssc1 cDNA was specifically mutated to substitute phenylalanine for leucine at position 1014 of the inferred amino acid sequence (L1014F), a polymorphism shown previously to be associated with the kdr (knockdown resistance) trait of the house fly. The L1014F substitution reduced the sensitivity of expressed house fly sodium channels to cismethrin at least 10-fold and increased the rate of decay of pyrethroid-induced sodium tail currents. These results demonstrate that the resistance-associated L1014F mutation confers a reduction in the sensitivity of house fly sodium channels to pyrethroids that is sufficient to account for the kdr resistance trait.  相似文献   

2.
The mouse Scn8a sodium channel and its ortholog Na6 in the rat are abundantly expressed in the CNS. Mutations in mouse Scn8a result in neurological disorders, including paralysis, ataxia, and dystonia. In addition, Scn8a has been observed to mediate unique persistent and resurgent currents in cerebellar Purkinje cells (Raman et al., 1997). To examine the functional characteristics of this channel, we constructed a full-length cDNA clone encoding the mouse Scn8a sodium channel and expressed it in Xenopus oocytes. The electrophysiological properties of the Scn8a channels were compared with those of the Rat1 and Rat2 sodium channels. Scn8a channels were sensitive to tetrodotoxin at a level comparable to that of Rat1 or Rat2. Scn8a channels inactivated more rapidly and showed differences in their voltage-dependent properties compared with Rat1 and Rat2 when only the alpha subunits were expressed. Coexpression of the beta1 and beta2 subunits modulated the properties of Scn8a channels, but to a lesser extent than for the Rat1 or Rat2 channels. Therefore, all three channels showed similar voltage dependence and inactivation kinetics in the presence of the beta subunits. Scn8a channels coexpressed with the beta subunits exhibited a persistent current that became larger with increasing depolarization, which was not observed for either Rat1 or Rat2 channels. The unique persistent current observed for Scn8a channels is consistent with the hypothesis that this channel is responsible for distinct sodium conductances underlying repetitive firing of action potentials in Purkinje neurons.  相似文献   

3.
The kdr and super-kdr point mutations found in the insect sodium channel gene are postulated to confer knockdown resistance (kdr) to pyrethroids. Using an allele-specific PCR assay to detect these mutations in individual horn flies, Haematobia irritans (L.), we determined the allelic frequency of the kdr and super-kdr mutations in several wild and laboratory populations. Wild populations with very similar allelic frequencies had resistance levels that ranged widely from 3- to 18-fold relative to a susceptible population. Conversely, the kdr allele frequency in a lab population with 17-fold resistance was nearly double that found in a heavily pressured wild population with 18-fold resistance. We conclude that, although the kdr mutation confers significant levels of pyrethroid resistance, a substantial component of resistance in insecticidally pressured populations is conferred by mechanisms that are PBO-suppressible. High super-kdr allele frequencies were detected in two resistant lab populations, but in wild populations with equivalent resistance the super-kdr allele frequency was very low. Interestingly, in over 1200 individuals assayed, the super-kdr mutation was never detected in the absence of the kdr mutation.  相似文献   

4.
Hyperkalemic periodic paralysis (HYPP), one of several inheritable myotonic diseases, results from genetic defects in the human skeletal muscle Na+ channel. In some pedigrees, HYPP is correlated with a single base pair substitution resulting in a Met replacing Thr704 in the fifth transmembrane segment of the second domain. This region is totally conserved between the human and rat channels. We have introduced the human mutation into the corresponding region of the rat muscle Na+ channel cDNA and expressed it in human embryonic kidney 293 cells. Patch-clamp recordings show that this mutation shifts the voltage dependence of activation by 10-15 mV in the negative direction. The shift results in a persistent Na+ current that activates near -70 mV; this phenomenon could underlie the abnormal muscle activity observed in patients with HYPP.  相似文献   

5.
Multiple mutations in a locus encoding a voltage-gated sodium channel have been predicted for pyrethroid resistance in insects. Previously we reported a mutation associated with pyrethroid resistance, Leu1029 to His, in domain II transmembrane segment S6 (IIS6) of the Heliothis virescens F. sodium channel (para homologue) hscp locus. Sequence analysis of additional resistance haplotypes 5' to this mutation in the hscp locus has uncovered a G to A transition leading to a Val to Met mutation at amino acid position 421 in IS6 (V421M, numbering from Drosophila para). The V421M mutation is found only in a unique resistant haplotype, but not in two susceptible and a distinct resistant haplotype carrying the L1029H mutation. Implications of this finding in the evolution and mechanisms of pyrethroid resistance are discussed.  相似文献   

6.
A class II Tn3-type transposable element, designated Tn5393 and located on plasmid pEa34 from streptomycin-resistant strain CA11 of Erwinia amylovora, was identified by its ability to move from pEa34 to different sites in plasmids pGEM3Zf(+) and pUCD800. Nucleotide sequence analysis reveals that Tn5393 consists of 6,705 bp with 81-bp terminal inverted repeats and generates 5-bp duplications of the target DNA following insertion. Tn5393 contains open reading frames that encode a putative transposase (tnpA) and resolvase (tnpR) of 961 and 181 amino acids, respectively. The two open reading frames are separated by a putative recombination site (res) consisting of 194 bp. Two streptomycin resistance genes, strA and strB, were identified on the basis of their DNA sequence homology to streptomycin resistance genes in plasmid RSF1010. StrA is separated from tnpR by a 1.2-kb insertion element designated IS1133. The tnpA-res-tnpR region of Tn5393 was detected in Pseudomonas syringae pv. papulans Psp36 and in many other gram-negative bacteria harboring strA and strB. Except for some strains of Erwinia herbicola, these other gram-negative bacteria lacked insertion sequence IS1133. The prevalence of strA and strB could be accounted for by transposition of Tn5393 to conjugative plasmids that are then disseminated widely among gram-negative bacteria.  相似文献   

7.
A recessive mutation exhibiting severe myelin breakdown, mainly at the level of the lumbar segments of the spinal cord and without any associated inflammation, was discovered in a partially inbred rat colony. Analysis of the segregation patterns of a set of polymorphic microsatellite markers in two inter-strain crosses allowed the mapping of this autosomal recessive mutation to rat Chromosome (Chr) 17, very close to the prolactin (Prl) locus, in a region homologous to human Chr 6p21.2-22.3 and mouse Chr 13. The pathology of the demyelination process and the chromosomal localization indicate that this mutation has no known equivalent in either mouse or human.  相似文献   

8.
HeLa cells were transfected with full-length multidrug resistance protein (MRP) cDNA and with MRP cDNAs that had been mutated at certain nucleotide binding domains. Stable transfectants were isolated and those producing equivalent amounts of P190 were tested in cytotoxicity assays using a variety of chemotherapeutic agents. The results demonstrate that deletions in the C-motif of NBD1 or the A-motif of NBD2 have a pronounced effect in reducing resistance levels to adriamycin, vincristine, or etoposide (VP-16). Single-site mutations of lysine in these same motifs reduce IC50 values but less than that observed with the deletion mutants. Additional studies have demonstrated an increase in drug accumulation and reduction in drug efflux in NBD deletion and single-site mutants. The results of this study therefore identify two lysines of the NBD A- and C-motifs that are critical for MRP-mediated multidrug resistance. The results also provide definitive evidence that resistance occurring as a result of MRP overexpression is related to enhanced levels of an ATP-dependent efflux pump.  相似文献   

9.
Although obesity has become the most common metabolic disorder in the developed world and is highly associated with insulin resistance and noninsulin-dependent diabetes mellitus, the molecular mechanisms underlying these disorders are not clearly understood. Tumor necrosis factor-alpha (TNF-alpha) is overexpressed in obesity and is a candidate mediator of obesity-induced insulin resistance. Complete lack of TNF-alpha function through targeted mutations in TNF-alpha gene or both of its receptors results in significant improvement of insulin sensitivity in dietary, chemical, or genetic models of rodent obesity. In this study, we have analyzed the in vivo role of TNF signaling from p55 [TNF receptor (TNFR) 1] and p75 (TNFR 2) TNFR in the development of insulin resistance by generating genetically obese mice (ob/ob) lacking p55 or p75 TNFRs. In the ob/ob mice, the absence of p55 caused a significant improvement in insulin sensitivity. p75 deficiency alone did not affect insulin sensitivity but might potentiate the effects of p55 deficiency in animals lacking both TNFRs. These results indicate that TNF-alpha is a component of insulin resistance in the ob/ob model of murine obesity and p55 TNFR is the predominant receptor mediating its actions.  相似文献   

10.
Phosphorylase b kinase from rabbit skeletal muscle can be phosphorylated and activated by a cyclic nucleotide- and Ca2(+)-independent protein kinase previously identified as an autophosphorylation-dependent multifunctional protein kinase (auto-kinase) from brain and liver (Yang et al., J. Biol. Chem. 262, 7034-7040 (1987) and Yang et al. J. Biol. Chem. 262, 9421-9427 (1987)). This independent kinase phosphorylates both alpha and beta subunits of phosphorylase b kinase and results in a approximately 5-fold activation of the kinase when 0.55 and 0.5 mol of phosphate are incorporated into the alpha and beta subunits, respectively. Activation of phosphorylase b kinase catalyzed by auto-kinase is about 70% of that observed with cAMP-dependent protein kinase. Analysis of phosphopeptide maps of alpha and beta subunits further reveals that both kinases phosphorylate almost the same sites on both alpha and beta subunits, suggesting that activation of phosphorylase b kinase by the two kinases may be through a common molecular action mechanism. Taken together with the previous result that auto-kinase can inactivate glycogen synthase, the present study provides initial evidence that a coordinate control mechanism for simultaneous regulation of glycogenolysis and glycogenesis can be modulated by autophosphorylation-dependent protein kinase in a cAMP- and Ca2(+)-independent pathway, representing a new mode of control mechanism for the regulation of glycogen metabolism in cells.  相似文献   

11.
12.
1. The binding of [3H]-P1075, a potent opener of adenosine-5'-triphosphate-(ATP)-sensitive K+ channels, was studied in a crude heart membrane preparation of the rat, at 37 degrees C. 2. Binding required MgATP. In the presence of an ATP-regenerating system, MgATP supported [3H]-P1075 binding with an EC50 value of 100 microM and a Hill coefficient of 1.4. 3. In saturation experiments [3H]-P1075 binding was homogeneous with a KD value of 6+/-1 nM and a binding capacity (Bmax) of 33+/-3 fmol mg(-1) protein. 4. Upon addition of an excess of unlabelled P1075, the [3H]-P1075-receptor complex dissociated in a mono-exponential manner with a dissociation rate constant of 0.13+/-0.01 min(-1). If a bi-molecular association mechanism was assumed, the dependence of the association kinetics on label concentration gave an association rate constant of 0.030+/-0.003 nM(-1) min(-1). From the kinetic experiments the KD value was calculated as 4.7+/-0.6 nM. 5. Openers of the ATP-sensitive K+ channel belonging to different structural classes inhibited specific [3H]-P1075 binding in a monophasic manner to completion; an exception was minoxidil sulphate where maximum inhibition was 68%. The potencies of the openers in this assay agree with published values obtained in rat cardiocytes and are on average 3.5 times lower than those determined in rat aorta. 6. Sulphonylureas, such as glibenclamide and glibornuride and the sulphonylurea-related carboxylate, AZ-DF 265, inhibited [3H]-P1075 binding with biphasic inhibition curves. The high affinity component comprised about 60% of the curves with the IC50 value of glibenclamide being approximately 90 nM; affinities for the low affinity component were in the microM concentration range. The fluorescein derivative, phloxine B, showed a monophasic inhibition curve with an IC50 value of 6 microM, a maximum inhibition of 94% and a Hill coefficient of 1.5. 7. It is concluded that binding studies with [3H]-P1075 are feasible in rat heart membranes in the presence of MgATP and of an ATP-regenerating system. The pharmacological profile of the [3H]-P1075 binding sites in the cardiac preparation, which probably contains sulphonylurea receptors (SURs) from cardiac myocytes (SUR2A) and vascular smooth muscle cells (SUR2B), differs from that expected for SUR2A and SUR2B.  相似文献   

13.
14.
Pseudohypoaldosteronism type 1 (PHA-1) is an inherited disease characterized by severe neonatal salt-wasting and caused by mutations in subunits of the amiloride-sensitive epithelial sodium channel (ENaC). A missense mutation (G37S) of the human ENaC beta subunit that causes loss of ENaC function and PHA-1 replaces a glycine that is conserved in the N-terminus of all members of the ENaC gene family. We now report an investigation of the mechanism of channel inactivation by this mutation. Homologous mutations, introduced into alpha, beta or gamma subunits, all significantly reduce macroscopic sodium channel currents recorded in Xenopus laevis oocytes. Quantitative determination of the number of channel molecules present at the cell surface showed no significant differences in surface expression of mutant compared with wild-type channels. Single channel conductances and ion selectivities of the mutant channels were identical to that of wild-type. These results suggest that the decrease in macroscopic Na currents is due to a decrease in channel open probability (P(o)), suggesting that mutations of a conserved glycine in the N-terminus of ENaC subunits change ENaC channel gating, which would explain the disease pathophysiology. Single channel recordings of channels containing the mutant alpha subunit (alphaG95S) directly demonstrate a striking reduction in P(o). We propose that this mutation favors a gating mode characterized by short-open and long-closed times. We suggest that determination of the gating mode of ENaC is a key regulator of channel activity.  相似文献   

15.
The effect of mitogen-stimulated (concanavalin A, Con A; phytohemagglutinin, PHA; pokeweed mitogen, PWM; Staphylococcus aureus Cowan I, SAC I) normal B lymphocytes on the clonal proliferation of granulocytic progenitors from marrow of healthy subjects (CFU-dG) was studied in diffusion chamber culture. PWM-, SAC- and Con A-stimulated B lymphocytes produced an humoral activity that increased the CFU-dG-derived colony formation. The highest growth-stimulating effect was induced by SAC I-preincubated B lymphocytes and to a lesser degree by PWM- or Con A-stimulated B cells. In contrast, PHA-preincubated and unstimulated B lymphocytes revealed no effect on the CFU-dG proliferation.  相似文献   

16.
Nitric oxide (NO)-related activity has been shown to be protective against Plasmodium falciparum in vitro. It has been hypothesized, however, that excess NO production contributes to the pathogenesis of cerebral malaria. The purpose of this study was to compare markers of NO production [urinary and plasma nitrate + nitrite (NOx)], leukocyte-inducible nitric oxide synthase type 2 (NOS2), and plasma TNF-alpha and IL-10 levels with disease severity in 191 Tanzanian children with and without malaria. Urine NOx excretion and plasma NOx levels (corrected for renal impairment) were inversely related to disease severity, with levels highest in subclinical infection and lowest in fatal cerebral malaria. Results could not be explained by differences in dietary nitrate ingestion among the groups. Plasma levels of IL-10, a cytokine known to suppress NO synthesis, increased with disease severity. Leukocyte NOS2 antigen was detectable in all control children tested and in all those with subclinical infection, but was undetectable in all but one subject with cerebral malaria. This suppression of NO synthesis in cerebral malaria may contribute to pathogenesis. In contrast, high fasting NOx levels and leukocyte NOS2 in healthy controls and asymptomatic infection suggest that increased NO synthesis might protect against clinical disease. NO appears to have a protective rather than pathological role in African children with malaria.  相似文献   

17.
18.
19.
We expressed human endothelin receptors, ET(A) and ET(B), in insect Sf9 cells infected by recombinant baculoviruses that contained the respective cDNAs. Ligand-binding experiments showed that the two expressed receptors have the same affinities as observed for the receptors in mammalian cells, i.e. the ET(A) receptor showed an affinity order of ET-1 > or = ET-2 > ET-3, and the ET(B) receptor remained nonselective for three isopeptide ligands. The ET(B) receptor was purified by affinity chromatography with K9-biotinyl-ET-1 without losing the ligand-binding activity from the membrane of infected Sf9 cells. Protein chemical analysis of the purified ET(B) receptor showed that it is glycosylated, and that the N-terminal 38-amino-acid peptide is susceptible to proteolytic digestion, resulting in a small 35-kDa receptor like that found in the human placenta. Surprisingly, the infected and unlysed cells showed a strong intracellular Ca2+ concentration increase ([Ca2+]i), which was generated by a unique signal-transduction pathway consisting of the insect GTP-binding protein and human endothelin receptors expressed in the late phase of virus infection. Due mainly to an efficient expression (over 200,000 receptors/cell), to a low background owing to no endogenous homolog receptor in insect Sf9 cells, and to a sensitive fluorescent reagent Fura-2, this insect Sf9 cell system can detect the [Ca2+]i induced by picomolar levels of endothelin-receptor. We propose that this highly sensitive system be used to screen for potential antagonists/agonists of endothelin receptors.  相似文献   

20.
Two distinct stages in regulation of protein kinases are detectable upon cellular transformation of CEF induced by pp60v-src. Upon cellular transformation induced by ts v-src mutants, the kinase activities of Mek and p42Erk are rapidly induced at the early stage and significantly decreased at the late stage of cellular transformation. In contrast, a novel p63SAMK is partially activated at the early stage and is fully activated at the late stage of cellular transformation. However, p90RSK is activated through the entire course of cellular transformation. In this study, I detect a transient down-regulation of p90RSK activity that is inducible in cultures at the late stage of the src-induced cellular transformation by an increase of extracellular pH value from 7 to 8 and unidentified components in DMEM, but not in cultures which are at the early stage. Concomitant with down-regulation of p90RSK activity, the kinase activities of Mek, p42Erk, and p63SAMK are also down-regulated. Blockage of down-regulation of p90RSK activity by pretreatment of cells with different phosphatase inhibitors correlates with blockage of the down-regulation of either p42Erk or p63SAMK activity. Multiple pathways appear to involve in regulation of p90RSK activity. The discrepancy in regulation of protein kinase activity between the early and late stages of cellular transformation induced by pp60src may indicate a change in signaling cascades during the progress of cellular transformation. The induction of the down-regulation event in this study may provide a new approach to investigate the regulation not only of protein kinases but also phosphatases in transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号