首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在未知环境中基于模糊逻辑的移动机器人行为控制   总被引:2,自引:1,他引:2  
本文介绍了一种在未知环境中基于模糊逻辑的移动机器人行为控制方法.传统的行为控制方法存在两个弱点:①行为不易描述;②多个行为之间的冲突和竞争难以协调.这篇文章的主要思想是将模糊逻辑控制与行为控制相结合致使这两个问题得到有效的解决.仿真实验结果表明:所提的方法通过多个行为如避障边沿行走和目标导向的融合,能够有效地对机器人在复杂和未知环境中导航.另外,该方法还适用于多传感器的融合与集成.  相似文献   

2.
This paper is concerned with the problem of reactive navigation for a mobile robot in an unknown clustered environment. We will define reactive navigation as a mapping between sensory data and commands. Building a reactive navigation system means providing such a mapping. It can come from a family of predefined functions (like potential fields methods) or it can be built using ‘universal’ approximators (like neural networks). In this paper, we will consider another ‘universal’ approximator: fuzzy logic. We will explain how to choose the rules using a behaviour decomposition approach. It is possible to build a controller working quite well but the classical problems are still there: oscillations and local minima. Finally, we will conclude that learning is necessary for a robust navigation system and fuzzy logic is an easy way to put some initial knowledge in the system to avoid learning from zero.  相似文献   

3.
由于未知环境下机器人导航容易出现死锁问题,设计了一种基于栅格的地图模型叫“数据栅格”,并在此基础上提出了一种基于行为的导航方法即“安全导航法”。数据栅格记录了周围环境中障碍物信息和机器人路径信息,安全导航法就是应用数据栅格技术来解决未知环境下机器人导航遇到的死锁问题。模糊逻辑用来设计和协调各种导航行为。仿真和实际环境的实验结果也证实了该方法的良好性能。  相似文献   

4.
基于不确定网格地图的移动机器人导航   总被引:1,自引:0,他引:1  
研究了在未知环境下的移动机器人导航问题.在分析超声传感器不确定性模型的基础上,根据模糊集理论创建网格地图来描述机器人工作环境,使用模糊隶属度表示网格占用状态.通过网格信息融合来减弱传感器测量误差,提高网格地图的精度.提出基于模糊网格地图的路径规划算法,利用重复局部优化路径搜索来实现全局路径规划.机器人通过交替进行创建地图和路径规划两个基本过程来完成导航任务.仿真结果表明创建的地图能较精确地表示环境信息。规划的路径可以使机器人安全地到达目的地.  相似文献   

5.
针对非完整移动机器人在未知室内环境中提出了一种路径规划方法, 通过利用传感器对周围环境的探测和实时处理传感器数据, 以及所设计的目标寻找函数, 可以有效地完成其运动规划. 该方法能够确保移动机器人在无障碍物区或障碍物对机器人不构成危险时加速前进, 在障碍物区能够慢速绕过, 从而使得移动机器人快速且安全地到达目标位置, 仿真的结果证明了该方法的有效性.  相似文献   

6.
基于多传感器信息融合的移动机器人导航综述   总被引:3,自引:0,他引:3  
综述了自主式移动机器人导航技术,对其中的同步定位与地图创建、路径规划以及多传感器信息融合等技术进行了详细的分析,并从基于地图、基于环境和基于行为3个方面全面地阐述了移动机器人路径规划技术的研究现状.对当前的研究热点SLAM技术、遗传算法和基于行为的规划算法等进行了较为详细的介绍和分析.同时,展望了移动机器人导航技术的发展趋势.  相似文献   

7.
非完整移动机器人利用传感器可以解决不确定性模型和未知环境中的许多问题. 利用移动机器人上配备的传感器的信息组合提出了一种在线视点寻求算法, 结合移动机器人的运动方程和传感器的量测方程采用扩展Kalman估计来对移动机器人的位置进行修正, 以降低运动的不确定性, 从而得到一种鲁棒的规划算法, 仿真的结果证明了上述方法是行之有效的.  相似文献   

8.
The bucket wheel reclaimer(BWR) is a key piece of equipment which has been widely used for stacking and reclaiming bulk materials(i.e.iron ore and coal) in places such as ports,iron-steel plants,coal storage areas,and power stations from stockpiles.BWRs are very large in size,heavy in weight,expensive in price,and slow in motion.There are many challenges in attempting to automatically control their motion to accurately follow the required trajectories involving uncertain parameters from factors such as friction,turbulent wind,its own dynamics,and encoder limitations.As BWRs are always heavily engaged in production and cannot be spared very long for motion control studies and associated developments,a BWR model and simulation environment closely resembling real life conditions would be beneficial.The following research focused mainly on the implementation of fuzzy logic to a BWR motion control from an engineer’s perspective.First,the modeling of a BWR including partially known parameters such as friction force and turbulence to the system was presented.This was then followed by the design of a fuzzy logic-based control built on a model-based control loop.The investigation provides engineers with an example of applying fuzzy logic in a model based approach to properly control the motion of a large BWR following defined trajectories,as well as to show possible ways of further improving the controller performance.The result indicates that fuzzy logic can be applied easily by engineers to overcome most motion control issues involving a large BWR.  相似文献   

9.
本文采用模糊控制的方法控制移动机器人的前进方向,在模糊控制中根据障碍物的实际位置及机器人运动方向与目标点夹角的不同情况,给出了机器人的反应规则。移动机器人的运动方向的控制利用自启发式规则进行模糊推理而实现。  相似文献   

10.
本文采用模糊控制的方法控制移动机器人的前进方向,在模糊控制中根据障碍物的实际位置及机器人运动方向与目标点夹角的不同情况,给出了机器人的反应规则。移动机器人的运动方向的控制利用自启发式规则进行模糊推理而实现。  相似文献   

11.
研究环境未知情况下移动机器人的避障问题,提出一种基于模糊场景匹配的移动机器人避障方法.该方法对多种传感器的信息进行融合,生成当前环境的场景并与场景库中的场景进行匹配,利用匹配结果并通过模糊控制器得到机器人的运动参数,对机器人的避障进行控制,实验结果表明了该方法的正确性和有效性。  相似文献   

12.
There have been only few attempts to extend fuzzy logic to automated theorem proving. In particular, the applicability of the resolution principle to fuzzy logic has been little examined. The approaches that have been suggested in the literature, however, have made some semantic assumptions which resulted in limitations and inflexibilities of the inference mechanism. In this paper we present a new approach to fuzzy logic and reasoning under uncertainty using the resolution principle based on a new operator, the fuzzy operator. We present the fuzzy resolution principle for this logic and show its completeness as an inference rule.  相似文献   

13.
机器视觉与机器人的结合是未来机器人行业发展的一大趋势。在移动机器人的避障导航方案中,使用传统的传感器存在诸多问题,且获取的信息有限。提出一种基于单目视觉的移动机器人导航算法,在算法应用中,如果使用镜头焦距已知的相机,则无需对相机标定。为降低光照对障碍物边缘检测的影响,将机器人拍摄的彩色图像转换到HSI空间。采用canny算法对转换后的分量分别进行边缘检测,并合成检测结果。通过阈值处理过滤合成边缘,去除弱边缘信息,提高检测准确度。采用形态学处理连接杂散边缘,通过区域生长得到非障碍区域,并由几何关系建立图像坐标系与机器人坐标系之间的映射关系。利用结合隶属度函数的模糊逻辑得出机器人控制参数。实验结果表明,对图像颜色空间的转换降低了地面反光、阴影的影响,算法能有效排除地面条纹等的干扰并准确检测出障碍物边缘,而模糊逻辑决策方法提高了算法的鲁棒性和结果的可靠性。  相似文献   

14.
15.
为了更好地解决移动机器人在未知环境下的自主避障问题,采用多传感器信息融合的方法,通过多个超声传感器对障碍物信息进行采集。合理确立模糊控制器的输入输出,通过模糊推理将障碍物距离信息模糊化,建立模糊规则并解模糊,以达到对移动机器人的安全避障的控制。通过建立移动机器人运动模型,设计了仿真平台,得到实验结果表明:该算法具有良好的可行性。  相似文献   

16.
This paper presents a new path planning algorithm based on Probability and Fuzzy Logic (PFL) as a duality technique to enhance the performance of Fuzzy Logic alone. Fuzzy Logic interacts with the grading of obstacles existed in the path and probability lies over the decision to move the mobile robot. The fuzzy grading correspondence with the probabilistic decision is the primary function of moving the mobile robot towards the goal and the secondary is path planning which lies over the probability distribution function. The distance–speed combination rule is developed for effective navigation. The single and multiple mobile robot systems have been tested successfully in a dense environment in presence of obstacles (static and dynamic) and moving goal. The obtained results are optimal when compared to other navigational approaches in sense of navigational path length and time in the static and dynamic environment.  相似文献   

17.
Compliance control of the peg-in-hole insertion while both peg and hole are rigidly supported, is studied. Initially, the peg-in-hole operation is mathematically modelled to develop a better understanding of the existing constraints. Imitating a human operator, a compliant motion for the assembly of the peg in the hole using the heuristic approach is developed. Two basic fuzzy controllers are studied. One in which inference engine operates purely based on force/torque information received from the sensor. In the other the approximate position of the peg is also taken into account to estimate the corrective action required. The rule-bases of both controllers are developed based on the qualitative knowledge of the behaviour of the controlled process. The performance of the fuzzy controllers are compared with the performance of a non-fuzzy IF–THEN logic branching control algorithm. The results obtained are encouraging.  相似文献   

18.
The uses of fuzzy logic in autonomous robot navigation   总被引:10,自引:0,他引:10  
 The development of techniques for autonomous navigation in real-world environments constitutes one of the major trends in the current research on robotics. An important problem in autonomous navigation is the need to cope with the large amount of uncertainty that is inherent of natural environments. Fuzzy logic has features that make it an adequate tool to address this problem. In this paper, we review some of the possible uses of fuzzy logic in the field of autonomous navigation. We focus on four issues: how to design robust behavior-producing modules; how to coordinate the activity of several such modules; how to use data from the sensors; and how to integrate high-level reasoning and low-level execution. For each issue, we review some of the proposals in the literature, and discuss the pros and cons of fuzzy logic solutions. Received: 31 March 1997 / Accepted: 24 September 1997  相似文献   

19.
Reinforcement based mobile robot navigation in dynamic environment   总被引:1,自引:0,他引:1  
In this paper, a new approach is developed for solving the problem of mobile robot path planning in an unknown dynamic environment based on Q-learning. Q-learning algorithms have been used widely for solving real world problems, especially in robotics since it has been proved to give reliable and efficient solutions due to its simple and well developed theory. However, most of the researchers who tried to use Q-learning for solving the mobile robot navigation problem dealt with static environments; they avoided using it for dynamic environments because it is a more complex problem that has infinite number of states. This great number of states makes the training for the intelligent agent very difficult. In this paper, the Q-learning algorithm was applied for solving the mobile robot navigation in dynamic environment problem by limiting the number of states based on a new definition for the states space. This has the effect of reducing the size of the Q-table and hence, increasing the speed of the navigation algorithm. The conducted experimental simulation scenarios indicate the strength of the new proposed approach for mobile robot navigation in dynamic environment. The results show that the new approach has a high Hit rate and that the robot succeeded to reach its target in a collision free path in most cases which is the most desirable feature in any navigation algorithm.  相似文献   

20.
研究了一种引导机器人沿着固定轨迹运动的实时视觉伺服系统,并提出了一种实现移动机器人导航的创新的系统架构.系统由基于鱼眼镜头的全方位视觉传感器和嵌入式图像处理单元构成,可以实时校正鱼眼镜头畸变,并利用复合的粒子滤波算法识别和跟踪自定义的航标,最终实现移动机器人的导航.实验表明,该系统能够校正鱼眼镜头畸变,实时跟踪航标并有效实现机器人的定位和导航,且结构紧凑、功耗低,容易集成到各种移动设备中实现自主导航、安防监控等功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号