首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CaCu3Ti4O12 (CCTO) was synthesized and sintered by microwave processing at 2·45 GHz, 1·1 kW. The optimum calcination temperature using microwave heating was determined to be 950°C for 20 min to obtain cubic CCTO powders. The microwave processed powders were sintered to 94% density at 1000°C/60 min. The microstructural studies carried out on these ceramics revealed the grain size to be in the range 1–7 μm. The dielectric constants for the microwave sintered (1000°C/60 min) ceramics were found to vary from 11000–7700 in the 100 Hz–00 kHz frequency range. Interestingly the dielectric loss had lower values than those sintered by conventional sintering routes and decreases with increase in frequency.  相似文献   

2.
Ce0.8Sm0.2O1.9 (SDC) powder was synthesized by spray pyrolysis at 650 °C. XRD results showed that phase-pure SDC powder with an average crystallite size of 11 nm was synthesized. SDC electrolyte film was prepared by tape casting and sintered at different temperatures of 1,300, 1,400 and 1,500 °C for 2 h, respectively. The SDC electrolyte film was relatively denser and showed finer microstructure at relatively lower temperature of 1,400 °C, which might be due to the high sintering activity of the spray pyrolysis SDC powder. The ionic conductivity of the SDC electrolyte film sintered at 1,400 °C reached a maximum value of 9.5 × 10−3 S cm−1 (tested at 600 °C) with an activation energy for conduction of 0.90 eV.  相似文献   

3.
Ba(Zr0.2Ti0.8)O3 (BZT) ceramics are prepared from spray-dried powder by spark plasma sintering (SPS) and by normal sintering. By the application of SPS, ceramics with >96% relative densities could be obtained by sintering at 1,100 °C for 5 min in air atmosphere. The pellet as sintered by SPS at 1,100 °C was black and conductive. Although SPS was carried out in air atmosphere, the samples were deoxidized by heating the carbon die. By post-annealing at 1,000 °C for 12 h in air, the pellet was oxidized and became white and insulating. Grain growth was suppressed in the ceramics prepared by SPS, and the average grain size was 0.52 μm. The starting powder contained 1.90% carbon, mainly as binder, and the SPS-prepared ceramics and ordinary prepared ceramics contained 0.15 and 0.024% carbon, respectively. The BZT ceramics obtained by SPS and the subsequent annealing at 1,000 °C for 12 h exhibited a mild temperature dependence of their dielectric constant. The field-induced displacement of the BZT ceramics was less hysteretic and smaller than that of the ceramics sintered by the conventional method.  相似文献   

4.
CuO-doped lead-free ceramics based on bismuth sodium titanate (Bi0.5Na0.5TiO3, BNT) and barium zirconate titanate (Ba(Zr0.07Ti0.93)O3, BZT) were prepared via a multi-step solid-state reaction process. The BNT–BZT with CuO dopant ceramics sintered at 1150–1180 °C for 2 h in air showed a pure perovskite structure. SEM images reveal that a small amount of CuO (<2 mol%) play a significant role on the microstructure to improve its sintering attributes, while it will degrade when the dopant is added beyond 2 mol%. The dielectric and piezoelectric properties of CuO-doped BNT–BZT ceramics were evaluated. At room temperature, the sample doped with 2 mol% CuO shows quite good properties such as a high piezoelectric constant (d 33 ∼156.5 pC/N) and a high electromechanical coupling factor (k t ∼52%). The depolarization temperature increased dramatically and the maximum permittivity temperature decreased slightly.  相似文献   

5.
The effects of replacement of MgO by CaO on the sintering and crystallization behavior of MgO–Al2O3–SiO2 system glass-ceramics were investigated. The results show that with increasing CaO content, the glass transition temperature firstly increased and then decreased, the melting temperature was lowered and the crystallization temperature of the glass-ceramics shifted clearly towards higher temperatures. With the replacement of MgO by less than 3 wt.% CaO, the predominant crystalline phase in the glass-ceramics fired at 900 °C was found to be α-cordierite and the secondary crystalline phase to be μ-cordierite. When the replacement was increased to 10 wt.%, the predominant crystalline phase was found to be anorthite and the secondary phase to be α-cordierite. Both thermal expansion coefficient (TCE) and dielectric constant of samples increases with the replacement of MgO by CaO. The dielectric loss of sample with 5 wt.% CaO fired at 900 °C has the lowest value of 0.08%. Only the sample containing 5 wt.% and10 wt.% CaO (abbreviated as sample C5 and C10) can be fully sintered before 900 °C. Therefore, a dense and low dielectric loss glass-ceramic with predominant crystal phase of α-cordierite and some amount of anorthite was achieved by using fine glass powders (D50 = 3 μm) fired at 875–900 °C. The as-sintered density approaches 98% theoretical density. The flexural strength of sample C5 firstly increases and then decreases with sintering temperature, which closely corresponds to its relative density. The TCE of sample C5 increases with increasing temperature. The dielectric property of sample C5 sintered at different temperatures depends on not only its relative density but also its crystalline phases. The dense and crystallized glass-ceramic C5 exhibits a low sintering temperature (≤900 °C), a fairly low dielectric constant (5.2–5.3), a low dielectric loss (≤10−3) at 1 MHz, a low TCE (4.0–4.25 × 10−6 K−1), very close to that of Si (∼3.5 × 10−6 K−1), and a higher flexural strength (≥134 MPa), suggesting that it would be a promising material in the electronic packaging field.  相似文献   

6.
The influences of B2O3 and CuO (BCu, B2O3: CuO = 1:1) additions on the sintering behavior and microwave dielectric properties of LiNb0.6Ti0.5O3 (LNT) ceramics were investigated. LNT ceramics were prepared with conventional solid-state method and sintered at temperatures about 1,100 °C. The sintering temperature of LNT ceramics with BCu addition could be effectively reduced to 900 °C due to the liquid phase effects resulting from the additives. The addition of BCu does not induce much degradation in the microwave dielectric properties. Typically, the excellent microwave dielectric properties of εr = 66, Q × f = 6,210 GHz, and τ f  = 25 ppm/oC were obtained for the 2 wt% BCu-doped sample sintered at 900 °C. Chemical compatibility of silver electrodes and low-fired samples has also been investigated.  相似文献   

7.
The microstructure and electrical properties of ZnO-Bi2O3-based varistor ceramics doped by Pr6O11 in the content range of 0–5.49 wt% were investigated at different sintering temperatures (1,100, 1,150, 1,175, 1,200 °C). The increase of sintering temperature leads to more dense ceramics, which increases the nonlinear property, whereas it decreases the voltage-gradient and leakage current. With increasing Pr6O11 content, the breakdown voltage increases because of the decreases of ZnO grain size. The improvement of non linear coefficient together with the decrease of leakage current are related to the uniformly distribution of secondary phases along the grain boundaries of the ZnO. The varistors sintered at 1,175 °C with the 3.37 wt% Pr6O11 doping possess the best electrical properties: the varistor voltage, nonlinear coefficient, and leakage current are 340 V/mm, 46 and 0.63 μA, respectively.  相似文献   

8.
Barium titanate (BaTiO3) thin films doped with Mn (0.1–1.0 at%) were prepared by r.f. magnetron sputtering technique. Oxygen/argon (O2/Ar) gas ratio is found to influence the sputtering rate of the films. The effects of Mn doping on the structural, microstructural and electrical properties of BaTiO3 thin films are studied. Mn-doped thin films annealed at high temperatures (700 °C) exhibited cubic perovskite structure. Mn doping is found to reduce the crystallization temperature and inhibit the grain growth in barium titanate thin films. The dielectric constant increases with Mn content and the dielectric loss (tan δ) reveals a minimum value of 0.0054 for 0.5% Mn-doped BaTiO3 films measured at 1 MHz. The leakage current density decreases with Mn doping and is 10−11 A/cm−2 at 6 kV/cm for 1% Mn-doped thin films.  相似文献   

9.
Samples of xBiFeO3–(1 − x)BaTiO3 (x = 0, 0.02, 0.04, 0.06, 0.07 and 0.08) were synthesized by solid state reaction technique and sintered in air in the temperature range 1,220–1,280 °C for 4 h. X-ray diffraction data showed that 2–8 mol% BiFeO3 can dissolve into the lattice of BaTiO3 and form single perovskite phase. The crystal structure changes from tetragonal to cubic phase at room temperature when 8 mol% of BiFeO3 was added into BaTiO3. Scanning electron microscope images indicated that the ceramics have compact and uniform microstructures, and the grain size of the ceramics decreases with the increase of BiFeO3 content. Dielectric constants were measured as functions of temperatures (25–200 °C). With rising addition of BiFeO3, the Curie temperature decreases. For the sample with x = 0.08, the phase transition occurred below room temperature. The boundary between tetragonal and cubic phase of the BiFeO3–BaTiO3 system at room temperature locates at a composition between 7 and 8 mol% of BiFeO3. The diffusivity parameter γ for compositions x = 0.02 and x = 0.07 is 1.21 and 1.29, respectively. The relaxor-like behaviour is enhanced by the BiFeO3 addition.  相似文献   

10.
Ceramic materials based on Ca0.5Zr2(PO4)3 and NaFeNb(PO4)3, structural analogs of NaZr2(PO4)3 (NZP), were prepared by spark plasma sintering. At sintering temperatures of 1100–1200 and 880°C and sintering times of 12 and 3 min, the relative densities reached were 99.1 and 99.9%, respectively. According to X-ray diffraction data, the sintering process caused no changes in phase composition. The ceramics had a dense, homogeneous microstructure and ranged in grain size from 0.5 to 2.5 μm.  相似文献   

11.
The effects of La3+ doped in calcium copper titanate (CCTO) at Ca2+ site and Cu2+ site were examined. The doped compositions, La0.1Ca0.85Cu3Ti4O12 (LCCTO) ceramics and CaLa0.1Cu2.85Ti4O12 (CLCTO) ceramics were prepared by the solid-state method. The microstructure, dielectric properties, complex impedance and nonlinear I–V characteristics were studied. And it was found that La3+ doped at Ca2+ site achieved lower sintering temperatures than that doped at Cu2+ site in CCTO ceramics. The dielectric loss (tan δ) of LCCTO ceramics was about 0.05 at 40 kHz when the sample was sintered at 1080 °C. Dielectric constant (ε′) of LCCTO ceramics was about 3.2 × 104 when the sample was sintered at 1100 °C, which was larger than CLCTO ceramics examined under the same process condition with sintering temperatures vary. The impedance analysis revealed that LCCTO ceramics had an influence of resistance of grain boundaries, which was stronger than that of CLCTO ceramics. Meanwhile, both LCCTO ceramics and CLCTO ceramics had a nonlinear-Ohmic property.  相似文献   

12.
Hydrothermally synthesized barium titanate (BaTiO3) powders with a submicrometre particle size have been fast-sintered with a heating rate of ∼ 200 °C min-1 at various temperatures (1250–1350 °C) for short times (5 and 15 min). The microstructures and dielectric properties of the sintered samples are studied and compared with those sintered conventionally. The sample fast-sintered at 1250 °C for 5 min had the highest dielectric constant value of approximately 3700 with an average grain size of about 1 μm. Both the dielectric constant and the Curie–Weiss temperature are found to be dependent on the grain size of the sintered samples, particularly when the average grain size is less than 5 μm. This has been attributed to the presence of internal stress in the fine-grained BaTiO3. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

13.
The effects of CuO–Bi2O3–V2O5 additions on the sintering temperature and the microwave dielectric properties of MgTiO3 ceramics were investigated systematically. The CuO–Bi2O3–V2O5 (CuBiV) addition significantly lowered the densification temperature of MgTiO3 ceramics from 1400 °C to about 900 °C, which is due to the formation of the liquid-phase of BiVO4 and Cu3(VO4)2 during sintering. The saturated dielectric constant (εr) increased, the maximum quality factor (Qf) values decreased and the temperature coefficient of resonant frequency (τf) shifted to a negative value with the increasing CuBiV content, which is mainly attributed to the increase of the second phase BiVO4. MgTiO3 ceramics with 6 wt.% CuBiV addition sintered at 900 °C for 2 h have the excellent microwave dielectric properties: ε r= 18.1, Qf = 20300 GHz and τf = −57 ppm/ °C.  相似文献   

14.
The microstructure, electrical properties, and aging behavior of ZnO–V2O5–MnO2–CoO–Dy2O3 varistor ceramics were investigated for different contents of Dy2O3. The microstructure consisted of ZnO grain as a main phase and secondary phases such as Zn3(VO4)2, ZnV2O4, and DyVO4. The average grain size increased from 7.6 to 10.1 μm and the sintered density slightly increased from 5.53 to 5.57 g/cm3 with the increase of Dy2O3 content. The varistor ceramics added with 0.05 mol% Dy2O3 exhibited the most nonlinear properties, with nonlinear coefficient of 30, and the highest stability against DC-accelerated aging stress. The Dy2O3 acted as an acceptor due to the decrease of donor density in the range of 2.73 × 1018/cm3 to 1.28 × 1018/cm3.  相似文献   

15.
Porous Si3N4 ceramics were successfully synthesized using cheaper talc and clay as sintering additives by pressureless sintering technology and the microstructure and mechanical properties of the ceramics were also investigated. The results indicated that the ceramics consisted of elongated β-Si3N4 and small Si2N2O grains. Fibrous β-Si3N4 grains developed in the porous microstructure, and the grain morphology and size were affected by different sintering conditions. Adding 20% talc and clay sintered at 1700°C for 2 h, the porous Si3N4 ceramics were obtained with excellent properties. The final mechanical properties of the Si3N4 ceramics were as follows: porosity, P 0 = 45·39%; density, ρ = 1·663·g·cm−3; flexural strength, σ b (average) = 131·59 MPa; Weibull modulus, m = 16·20.  相似文献   

16.
Pure K0.5Na0.5NbO3 lead-free piezoelectric ceramics without any dopants/additives were sintered at various temperatures (950–1125 °C) in low pO2 atmosphere (pO2?~?10?6 atm). All ceramics exhibit high relative densities (>?94%) and low weight loss (<?0.6%). Compared to the ceramics sintered in air, the ceramics sintered in low pO2 exhibit improved electrical properties. The piezoelectric constant d33 and converse piezoelectric constant d33* are 112 pC/N and 119 pm/V, respectively. The ceramics show typical ferroelectric behavior with the remnant polarization of 21.6 µC/cm2 and coercive field of 15.5 kV/cm under measurement electric field of 70 kV/cm. The good electrical properties of the present samples are related to the suppression of volatility of the alkali cations during the sintering process in low pO2 atmosphere.  相似文献   

17.
The preparation of Calcium copper titanate (CCTO) nanopowder was carried out by a sol–gel self combustion method. The X-ray diffraction analysis indicated that the samples calcined at 800 °C were fully crystallized in the CCTO phase. The results of atomic force microscope showed the particles size of CCTO was in the range of 60–80 nm. The absorption bands corresponding to vibrations of Cu–O, Ti–O–Ti and νCa–O were observed at 512, 450 and 562 cm−1 using FTIR. The samples sintered at 950 °C showed the densities as high as 97% of theoretical density. The grain sizes of sintered pellets were determined by HRSEM. The dielectric properties of prepared samples were studied by LCR meter.  相似文献   

18.
Barium titanate powders differing in particle size (110–740 nm) were prepared by calcining barium titanyl oxalate precipitated by the Merker method. The powders were sintered to produce PTCR ceramics with the composition 100(Ba0.89Ca0.08Pb0.03)TiO3 + 0.8TiO2 + 0.7Y + 0.1Mn + 2.5SiO2 and electrical properties of the ceramics were studied. The results demonstrate that improving the crystallinity of the barium titanate powder suppresses recrystallization of the ceramics and has a significant effect on their resistance ratio and electric strength. We found the optimal range of calcination temperatures (950–1000°C) for barium titanyl oxalate which ensures the highest electric strength of thermistors with a resistance of 31 Ω. The average crystallite size of the parent barium titanate powder is ∼250–320 nm.  相似文献   

19.
The formation of solid solutions of the type [Ba(HOC2H4OH)4][Sn1−x Ge x (OC2H4O)3] as BaSn1−x /Ge x O3 precursor and the phase evolution during its thermal decomposition are described in this paper. The 1,2-ethanediolato complexes can be decomposed to nano-sized BaSn1−x /Ge x O3 preceramic powders. Samples with x = 0.05 consist of only a Ba(Sn,Ge)O3 phase, whereas powders with x = 0.15 and 0.25 show diffraction patterns of both the Ba(Sn,Ge)O3 and BaGeO3 phase. The sintering behaviour was investigated on powders with a BaGeO3 content of 5 and 15 mol%. These powders show a specific surface area of 15.4–15.9 m2/g and were obtained from calcination above 800 °C. The addition of BaGeO3 reduced the sintering temperature of the ceramics drastically. BaSn0.95Ge0.05O3 ceramics with a relative density of at least 90% can be obtained by sintering at 1150 °C for 1 h. The ceramic bodies reveal a fine microstructure with cubical-shaped grains between 0.25 and 0.6 μm. For dense ceramics, the sintering temperature could be reduced down to 1090 °C, when the soaking time was extended up to 10 h.  相似文献   

20.
Based on the principle of stability of geopolymer gel as refractory binder, a geopolymeric paste in the K2O–Al2O3–SiO2 system was developed and used to produce refractory concretes by adding various amount of α-quartz sand (grain size in the range 0.1 μm to 1 mm) and fine powder alumina (grain size in the range 0.1–100 μm). The consolidated samples were characterized before and after sintering using optical dilatometer, DSC, XRD and SEM. The total shrinkage in the range of 25–900 °C was less than 3%, reduced with respect to the most diffused potassium or sodium based geopolymer systems, which generally records a >5% shrinkage. The maximum shrinkage of the basic geopolymer composition was recorded at 1000 °C with a 17% shrinkage which is reduced to 12% by alumina addition. The temperature of maximum densification was shifted from 1000 °C to 1150 or 1200 °C by adding 75 wt% α-quartz sand or fine powder alumina respectively. The sequences of sintering of geopolymer concretes could be resumed as dehydration, dehydroxylation, densification and finally plastic deformation due to the importance of liquid phase. The geopolymer formulations developed in this study appeared as promising candidates for high-temperature applications: refractory, fire resistant or insulating materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号