共查询到20条相似文献,搜索用时 19 毫秒
1.
Dense sialon ceramics along the tie line between Si3 N4 and Nd2 O3 ·9AlN were prepared by hot-pressing at 1800°C. The materials were subsequently heat-treated in the temperature range 1300–1750°C and cooled either by turning off the furnace (yielding a cooling rate (Tcool ) of ∼50°C/min) or quenching (Tcool ≥ 400°C/min). It was found necessary to use the quenching technique to reveal the true phase relationships at high temperature, and it was established that single-phase α-sialon forms for 0.30 x 0. 51 in the formula Ndx Si12–4S x Al4.5 x O1. 5 x , N16–1.5 x . The α-sialon is stable only at temperatures above 1650°C, and it transforms at lower temperatures by two slightly different diffusion-controlled processes. Firstly, an α-sialon phase with lower Nd content is formed together with an Al-containing Nd-melilite phase, and upon prolonged heat treatment thus-formed α-sialon decomposes to the more stable β-sialon and either the melilite phase or a new phase of the composition NdAl(Si6-z Alz )N10-z Oz . Nd-doped α-sialon ceramics containing no crystalline intergranular phase show very high hardness (HV10 = 22. 5 GPa) and a fracture toughness ( K lc = 4.4 MPa·m1/2 ) at room temperature. The presence of the melilite phase, which easily formed when slow cooling rates were applied or by post-heat-treatment, reduced both the fracture toughness and hardness of the materials. 相似文献
2.
Mailadil T. Sebastian Sam Solomon Ravindran Ratheesh Jacob George Pezholil Mohanan 《Journal of the American Ceramic Society》2001,84(7):1487-1489
Microwave ceramic dielectric resonators (DRs) based on RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) have been prepared using the conventional solid-state ceramic route. The DR samples are characterized using XRD and SEM methods. The microwave dielectric properties are measured using resonant methods and a net work analyzer. The ceramics based on Ce, Pr, Nd, and Sm have dielectric constants in the range 32–54 and positive coefficient of thermal variation of resonant frequency (τf ). The ceramics based on Gd, Tb, Dy, Y, and Yb have dielectric constants in the range 19–22 and negative τf . 相似文献
3.
Effects of Y2O3–RE2O3 (RE = Sm,Gd, Lu) Additives on Electrical and Thermal Properties of Silicon Carbide Ceramics 下载免费PDF全文
Seung Hoon Jang Kwang Joo Kim Seoung‐Jae Lee Kwang‐Young Lim 《Journal of the American Ceramic Society》2016,99(1):265-272
In this study, we investigated the electrical and thermal properties of SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 (RE = Sm, Gd, Lu) additives. The three SiC ceramics with 2 vol% equimolar Y2O3–RE2O3 additives showed electrical conductivities on the order of ~103 (Ω·m)?1, which is one order of magnitude higher than that of the SiC ceramics sintered with 2 vol% Y2O3 only. The increase in electrical conductivity is attributed to the growth of heavily nitrogen‐doped SiC grains during sintering and the confinement of oxide additives in the junction area. The thermal conductivities of the SiC ceramics were in the 176–198 W·(m·K)?1 range at room temperature. The new additive systems, equimolar Y2O3–RE2O3, are beneficial for achieving both high electrical conductivity and high thermal conductivity in SiC ceramics. 相似文献
4.
Mamoru Mitomo Yoh-ichiro Sato Nobuo Ayuzawa Isamu Yashima 《Journal of the American Ceramic Society》1991,74(4):856-858
Plasma etching of β-Si3 N4 , α-sialon/β-Si3 N4 and α-sialon ceramics were performed with hydrogen glow plasma at 600°C for 10 h. The preferential etching of β-Si3 N4 grains was observed. The etching rate of α-sialon grains and of the grain-boundary glassy phase was distinctly lower than that of β-Si3 N4 grains. The size, shape, and distribution of β-Si3 N4 grains in the α-sialon/β-Si3 N4 composite ceramics were revealed by the present method. 相似文献
5.
Wei-Wu Chen Xin-Lu Su Pei-Ling Wang Dong-Sheng Yan Yi-Bing Cheng Koji Watari 《Journal of the American Ceramic Society》2005,88(8):2304-2306
Thick translucent and luminescent Gd–α-sialon ceramic disks (0.7–1.06 mm in thickness) were prepared by hot pressing. The effect of carbon atmosphere on their optical properties during sintering was explored by change packing methods. The results show that the sample with a lower carbon contamination has a higher translucence in the visible band and IR band (450–3500 nm), increasing transmission around 10% even if it is thicker. When excited at 350 nm, Gd–α-sialon with the lower carbon contamination can produce a visible light at 450–500 nm bands, but the luminescence is very weak in the sample containing more carbon contamination. These indicate that carbon contamination causes a severe degradation of the optical properties of α-sialon ceramics, and reduction of carbon contamination of α-sialon ceramics is very important for the optical property improvement. 相似文献
6.
Kurusaroor Mana Manu Chinnathambi Karthik Lii‐Cherng Leu Kokken Anlin Lazar Rick Ubic Mailadil Thomas Sebastian 《Journal of the American Ceramic Society》2013,96(5):1504-1511
The crystal structure and microwave dielectric properties of apatite‐type LiRE9(SiO4)6O2 ceramics (RE = La, Pr, Nd, Sm, Eu, Gd, and Er) have been investigated. The densification of lithium apatites has been greatly improved with the addition of 1 wt% LiF. Selected area electron diffraction and X‐ray diffraction (XRD) Rietveld analysis confirm that these compounds belong to the P63/m (No. 176) space group with hexagonal crystal symmetry. The porosity‐corrected relative permittivity was found to decrease with decreasing ionic polarizability of RE3+ ions. Relationships between the structural parameters and microwave dielectric properties have been examined. The observed variation in the quality factor of LiRE9(SiO4)6O2 + 1 wt% LiF ceramics (RE = La, Pr, and Nd) was correlated with average cation covalency (%). The temperature coefficient of resonant frequency was found to depend on the bond valence sum of cations. LiEr9(SiO4)6O2 + 1 wt% LiF ceramics showed good microwave dielectric properties with εr = 12.8, Qu × f = 13000 GHz and τf = +17 ppm/°C. All the compositions showed low coefficient of thermal expansion with thermal conductivity in the range 1.3–2.8 W (m K)?1. 相似文献
7.
《Ceramics International》2016,42(6):7360-7365
Y2O3 stabilized ZrO2 (YSZ) has been considered as the material of choice for thermal barrier coatings (TBCs), but it becomes unstable at high temperatures and its thermal conductivity needs to be further reduced. In this study, 1 mol% RE2O3 (RE=La, Nd, Gd, Yb) and 1 mol% Yb2O3 co-doped YSZ (1RE1Yb–YSZ) were fabricated to obtain improved phase stability and reduced thermal conductivity. For 1RE1Yb–YSZ ceramics, the phase stability of metastable tetragonal (t′) phase increased with decreasing RE3+ size, mainly attributable to the reduced driving force for t′ phase partitioning. The thermal conductivity of 1RE1Yb–YSZ was lower than that of YSZ, with the value decreasing with the increase of the RE3+ size mainly due to the increased elastic field in the lattice, but 1La1Yb–YSZ exhibited undesirably high thermal conductivity. By considering the comprehensive properties, 1Gd1Yb–YSZ ceramic could be a good potential material for TBC applications. 相似文献
8.
Z.-H. Xie M. Hoffman R. J. Moon P. R. Munroe Y.-B. Cheng 《Journal of the American Ceramic Society》2004,87(11):2114-2124
Two hot-pressed sintered α-sialon samples of differing microstructures, but identical chemical composition, were evaluated first, in terms of indentation hardness and modulus, by depth-sensing indentation (DSI) tests on planes parallel and normal to the hot-pressed surface. The surface and subsurface cracks created under the DSI tests have also been investigated in relation to the effect of microstructure. Subsequently, Vickers indentation tests were conducted to explore the deformation and fracture characteristics in the two samples. The effect of microstructure and grain orientation on the development of different types of cracks, in particular subsurface cracks, was revealed and analyzed. Additionally, it suggested that the focused ion beam (FIB) miller is a preferred tool, in comparison to the conventional cross-sectioning techniques, for examining subsurface crack formation and structural characteristics. 相似文献
9.
Compositional Effects on the Properties of Si-Al-RE-Based Oxynitride Glasses (RE = La, Nd, Gd, Y, or Lu) 总被引:1,自引:0,他引:1
Paul F. Becher Shirley B. Waters C. Gary Westmoreland Laura Riester 《Journal of the American Ceramic Society》2002,85(4):897-902
A series of silicon-aluminum oxynitride-glass compositions containing selected rare-earth (RE) additions were prepared to examine the effects of specific RE, as well as Si:Al:RE and N:O ratio, on properties. The properties that were characterized included density, thermal expansion coefficient (α), glass-transition temperature ( T g ), hardness ( H ), and Young's modulus ( E ). The compositions (in equivalent percent) selected included: 55 Si-20 RE-25 Al oxide and 80 O-20 N oxynitride, and 45 Si-30 RE-25 Al oxide and 70 O-30 N glasses. The results show that the density increased significantly with an increase in the RE atomic mass and slightly with an increase in N:O ratio. For each of the fixed Si-Al-RE-O-N compositions, the E , H , and T g values were each increased by substituting smaller RE ions, whereas the α value was decreased. For each specific cation composition and RE, increasing the N:O ratio systematically led to a decrease in the α values but an increase in the E , H , and T g values. The observed response in the glass properties to changes in composition appears to reflect modifications in the bonding within the glass network. 相似文献
10.
《Ceramics International》2022,48(24):36084-36090
The high-entropy ceramic materials (Zr0.25Ce0.25Hf0.25Y0.25)O1.875 (H-0) and (Zr0.2Ce0.2Hf0.2Y0.2RE0.2)O1.8 (H-RE) (RE = La, Nd and Sm) with fluorite structure and homogeneous element distribution were prepared. With fluorite structure, fine grain size and high density, the H-0 and H-RE ceramics displayed low thermal conductivity, suitable thermal expansion coefficient, high hardness and fracture toughness. The effect of La, Nd and Sm on the mechanical, heat conductivity and heat expansion properties of high entropy ceramics were discussed. The single-phase high-entropy ceramic materials in this work are very suitable for application as thermal barrier materials. 相似文献
11.
《Ceramics International》2023,49(16):26397-26410
Inspired by the high entropy effects of high-entropy components, a novel high-entropy rare-earth zirconate (La1/5Gd1/5Y1/5Sm1/5Yb1/5)2Zr2O7 (HEC-LZ) was designed and successfully synthesized in this work. In addition, two binary rare-earth doped zirconates (RE-LZ), (La1/3Sm1/3Yb1/3)2Zr2O7 (LSYZ) and (La1/3Gd1/3Y1/3)2Zr2O7 (LGYZ), were proposed using the same rare-earth elements for comparison. The thermal barrier coatings with LZ-based ceramic top layer were prepared by spray granulation, solid-phase synthesis and atmospheric plasma spraying techniques. The as-synthesized LZ-based ceramics are all dominated by the pyrochlore phase. Under 1000 °C, the thermal cycling performances of the three coatings were studied. The microstructure evolution and crack expansion during the failure process were investigated in detail. The strengthening mechanism and the cause of coating spallation are proposed in combination with mechanical properties and thermal matching analysis. The results showed that compared with the undoped LZ coating, the thermal shock life of LGYZ coating, LSYZ coating and HEC-LZ coating is improved by nearly 46%, 27% and 57%, respectively. Due to the characteristics of high randomness, HEC-LZ ceramic has a large lattice distortion than RE-LZ ceramics, resulting in a higher coefficient of thermal expansion and fracture toughness, which contributes to maintaining the structure stability of coatings under thermal stress. 相似文献
12.
Lin Chen Peng Wu Peng Song Jing Feng 《Journal of the American Ceramic Society》2018,101(10):4503-4508
In this work, RE3NbO7 ceramics are synthesized via solid‐state reaction and the phase structure is characterized by X‐ray diffraction and Raman spectroscopy. The relationship between crystal structure and thermophysical properties is determined. Except Sm3NbO7, each RE3NbO7 exhibits excellent high‐temperature phase stability. The thermal expansion coefficients increase with the decreasing RE3+ ionic radius, which depends on the decreasing crystal lattice energy and the maximum value reaches 11.0 × 10?6 K?1 at 1200°C. The minimum thermal conductivity of RE3NbO7 reaches 1.0 W m?1 K?1 and the glass‐like thermal conductivity of Dy3NbO7 is dominant by the high concentration of oxygen vacancy and the local structural order. The outstanding thermophysical properties pronounce that RE3NbO7 ceramics are potential thermal barrier coating materials. 相似文献
13.
《应用陶瓷进展》2013,112(2):128-131
AbstractThe present work investigates the dielectric properties of pyrochlore type oxides, PbRETiTaO7 (RE=Y, La, Nd, Sm, Gd, or Dy) in the low frequency region (100 kHZ–1 MHz) at temperatures between 30 and 100°C and the microwave frequency region. The 1 MHz dielectric constants (K) are in the range 43–99 and show somewhat low variation with temperature (30–100°C) as well as frequency (1 kHz to 1 MHz). The temperature coefficient of dielectric constant (TCK) over the temperature range 30–100°C is negative and varies in the range, ?72 to ?342 ppm °C?1. The dielectric constant in the microwave frequency region is in the range 23–43. Among the samples, PbGdTiTaO7 shows very good quality factor (Q×f) of 4008 in the microwave frequency region. They all have cubic pyrochlore type structure as indicated by powder X-ray diffraction patterns. The sintered microstructure shows well formed grains without much porosity. 相似文献
14.
Lin Chen Jun Guo Yuke Zhu Mingyu Hu Jing Feng 《Journal of the American Ceramic Society》2021,104(1):404-412
The features of crystal structures, thermo-mechanical properties and their dominant mechanisms of weberites RE3NbO7 were studied as high-temperature oxides. We concentrated on connections between structures and thermo-mechanical properties, the influences of bond lengths, lattice distortion degrees and microstructures on these properties were estimated. The shortening of bond length and increment of bonding strength would lead to the increase of mechanical properties. The Vickers hardness (4.5-7.8 GPa) and toughness (0.5-1.6 MPa·m1/2) of weberites RE3NbO7 are enhanced by grain refinement and increment of bond strength, while crystal structures, bond lengths, and lattice distortion degrees influenced their Young's modulus (100-170 GPa). Nano-indentation was applied to test the influence of microstructures on modulus and hardness. The dominant mechanisms for mechanical properties and thermal conductivity were proposed, which was conducive to properties tailoring and engineering applications of weberites RE3NbO7 oxides. 相似文献
15.
16.
Zhilin Tian Jie Zhang Tianyin Zhang Xiaomin Ren Wanpeng Hu Liya Zheng Jingyang Wang 《Journal of the European Ceramic Society》2019,39(4):1463-1476
Rare earth (RE) silicates X1-RE2SiO5 (RE = La, Nd, Sm, Eu, and Gd) are comprehensively investigated as promising thermal barrier coating candidates. The mechanical, thermal, and corrosion resistance properties are evaluated by theoretical exploration and experimental measurement. Mechanical properties and corrosion resistance to calcium-magnesium alumino-silicates (CMAS) melts of X1-RE2SiO5 are linearly correlated with ionic radius of RE elements. Elastic moduli increase with the decrease of ionic radius of RE3+. X1-RE2SiO5 with larger RE3+ exhibits better resistance to molten melts corrosion. For thermal properties, they are not obviously sensitive to RE species. All X1-RE2SiO5 demonstrate low thermal conductivities and their magnitudes are significantly modified by concentration of defects. Thermal expansion coefficients of X1-RE2SiO5 are more or less close and are compatible with the value of superalloy. The results highlight X1-RE2SiO5 as potential thermal barrier coating candidates with overall properties. 相似文献
17.
Rare earth (RE: Nd,Dy, Ho,Y, Yb,and Sc) aluminosilicates for joining silicon carbide components 下载免费PDF全文
Marion Herrmann Sarfraz Ahmad Wolfgang Lippmann Hans‐Jürgen Seifert Antonio Hurtado 《International Journal of Applied Ceramic Technology》2017,14(4):675-691
Six different types of glass 12.18 RE2O3‐22 Al2O3‐65.82 SiO2 (mol %) where RE: Nd, Dy, Ho, Y, Yb, and Sc were tested for joining silicon carbide (SiC) components. The different types of glass vary in their thermal properties but they are similar in their behavior for the joining process when a laser‐based heating technology was used. The quality of the joints was characterized by microscopic analysis, mechanical tests, and measurements of tightness. Annealing experiments were conducted at temperatures in the range of the glass transition and crystallization allowing an assessment of the compositions for usability as glass and as glass‐ceramic interlayers. Five of the investigated compositions can be recommended for application up to temperatures of 900°C. The Y‐ and Yb‐based compositions guarantee a high joint quality at temperatures up to 1200°C. The high temperature assessment was based on tightness and microstructural analyses of the joints after the annealing procedures. The results can be transferred to joining processes with lower heating and cooling rates. 相似文献
18.
Jiuxin Jiang Peiling Wang Wanbao He Weiwu Chen Hanrui Zhuang Yibing Cheng Dongsheng Yan 《Journal of the American Ceramic Society》2004,87(4):703-705
Self-propagating high-temperature synthesis (SHS) was applied to synthesize α-SiAlON powders doped by RE (RE = Eu,Pr,Ce) and codoped by RE and yttrium. The results showed that the weight ratio of α-SiAlON to (α-SiAlON +β-SiAlON) decreased from 70%, 55%, and 25% for europium-, praseodymium-, and cerium-doped α-SiAlON compositions, respectively, and the weight percentage of α-SiAlON phase increased to 100% for both (Eu,Y) and (Pr,Y) systems and 94% for the (Ce,Y) system, indicating SHS is a promising approach for synthesizing α-SiAlONs stabilized by the cations that could not be incorporated into the α-SiAlON structure by conventional sintering methods. 相似文献
19.
Thommy Ekström Lena K. L. Falk Zhi-Jian Shen 《Journal of the American Ceramic Society》1997,80(2):301-312
Duplex αβ,-sialon ceramics with a minimum volume fraction of residual intergranular glass have been prepared using Dy or Sm as the α-sialon stabilizing element. These microstructures contained high aspect ratio β-sialon grains homogeneously distributed in an α-sialon matrix. A number of the larger α-sialon grains contained dislocations and showed a core/shell structure. Dy gave an α-sialon which was stable over a wide temperature range (1350–1800°C) for long holding times, while the use of Sm resulted in less stable α-sialon structures at medium temperatures (1450°C) and the formation of melilite, R2 Si3−x Alx O3+x N4−x , β-sialon, and the 21R sialon polytype during prolonged heating. High α-phase contents gave a very high hardness ( H V10 is approximately 22 GPa) but a comparatively low indentation fracture toughness (around 4.4 MPam1/2 ). Duplex sialons fabricated from powder mixtures corresponding to an α-to-β sialon ratio of around 50:50 resulted in a sialon material with a favorable combination of high hardness (around 22 GPa) and increased toughness (to around 5.5 MPam1/2 ). 相似文献
20.
Alena Bartek Thommy Ekström Harald Herbertsson Thomas Johansson 《Journal of the American Ceramic Society》1992,75(2):432-439
Dense α-sialon materials were produced by hot isostatic pressing (HIP) and post-hot isostatic pressing (post-HIP) using compositions with the formula Y x (Si12–4.5 x , Al4.5 x )-(O1.5 x ,N16–1.5 x ) with 0.1 ≤ x ≤ 0.9 and with the same compositions with extra additions of yttria and aluminum nitride. X-ray diffraction analyses show how the phase content changes from large amounts of β-sialon ( x = 0.1) to large amounts of α-sialon ( x = 0.4) and increasing amounts of mellilite and sialon polytypoids ( x = 0.8). Samples HIPed at 1600°C for 2 h contained unreacted α-silicon nitride, while those HIPed at 1750°C for 1 h did not. This could be due to the fact that the time is to short to achieve equilibrium or that the high pressure (200 MPa) prohibits α-sialon formation. Sintering at atmospheric pressure leads to open porosity for all compositions except those with excess yttria. Therefore, only samples with excess yttria were post-HIPed. Microstructrual analyses showed that the post-HIPed samples had the highest α-sialon content. A higher amount of α-sialon and subsequently a lower amount of intergranular phase were detected at x = 0.3 and x = 0.4 in the post-HIPed samples in comparison to the HIPed. The hardness (HV10) and fracture toughness ( K IC ) did not differ significantly between HIPed and post-HIPed materials but vary with different x values due to different phase contents. Measurements of cell parameters for all compositions show a continuous increase with increasing x value which is enhanced by high pressure at high x values. 相似文献