首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lattice parameters of RE4Al2O9 (RE = Y, Sin, Eu, Gd, Tb, Dy, Ho, Er, Tm, and Yb) prepared at 1600–1800°C and those of RE4Ga2O9 (RE = La, Pr, Nd, Sm, Eu, and Gd) prepared at 1400–1600°C were refined by Rietveld analysis for the X-ray powder diffraction patterns. The parameters increased linearly with the ionic radius of the trivalent rare-earth elements ( r RE). High-temperature differential calorimetry and dilatometry revealed that both RE4Al2O, and RE4Ga2O, have reversible phase transitions with volume shrinkages of 0.5–0.7% on heating and thermal hystereses. The transition temperatures (7tr) decreased from 1300°C (Yb) to 1044°C (Sm) for RE4A12O9, except for Y4Al2O9 ( Ttr = 1377°C), and from 1417°C (Gd) to 1271°C (La) for RE4Ga2O, with increasing ionic radius of the rare-earth elements. These transition temperatures were plotted on a curve against the ionic radius ratio of Al3+ or Gd3+ and RE3+ ( r A1Ga/rRE) except for Y4Al2O9.  相似文献   

2.
A significant solubility of Al in N-melilite phases (M) has been observed, and this results in the formation of a melilite solid solution (M'ss) of general formula Ln2Si3 − x Al x O3 + x N4 − x (Ln = rare earth). Up to one Si can be replaced by Al without change of structure, and the M'solid solution terminates at Ln2Si2AlO4N3 in samarium SiAlON systems. M'ss may appear as an intermediate phase during the sintering of SiAlONs, and its melting temperature is critical to the densification of the materials. For example, samarium M'ss melts at a temperature lower than neodymium M'ss, and as a result, samarium oxide shows better densification behavior in the preparation of α-SiAION ceramics than does neodymium oxide. Devitrification of M'ss from an amorphous grain boundary phase occurs above 1500°C during post heat-treatment. The M'ss is refractory and may offer better oxidation resistance than N-melilite because of the replacement of Al─O for Si─N in the structure. Therefore M'ss, is considered to be a most desirable grain boundary phase for α and α–β SiAlON ceramics.  相似文献   

3.
The solubility limit of α'-SiAION solid solutions on the Si3N4─YN:3AIN composition join in the system Si3N4─YN─AIN has been determined at 1800°C. The end members of these solid solutions are Y0.43Si10.7Al1.3N16 and Y0.8Si9.6Al2.4N16. Unit-cell dimensions of the α'-SiAION solid solutions in the system Si,Al,Y/N,O can be expressed as follows: a o(Å) = 7.752 + 0.045 m + 0.009 n , c o(Å) = 5.620 + 0.048 m + 0.009 n , where the α'-SiAION solid solution has the formula Y x Si12-( m+n )Al m+n N16- n O n . The single-phase boundary of the solid solution α'-SiAION on the composition triangle Si3N4─YN:3AIN─AIN:Al2O3 is delineated. The present paper also reports the phase relationships involving α'-SiAION.  相似文献   

4.
A new phase in the Si-Al-O-N system has been identified, following syntheses based on the nitridation of silicon/clay mixtures at low temperatures (<1350°C). The structure of the new phase was determined using a combination of diffraction and high-resolution imaging techniques, and this new phase possessed the same sheet structure as Ó-SiAlON (Si2− x Al x O1+ x N2− x ) but with a different stacking arrangement. It is considered to be a low-temperature polymorph of Ó-SiAlON and transforms to conventional Ó-SiAlON at temperatures greater than ∼1350°C.  相似文献   

5.
The phase relations in the Si3N4-rich portion of the Si3N4–AlN–Y2O3 rystem were investigated using hot-pressed bodies. The one-phase fields of β3 and α, the twophase fields of β+α, β+M (M=melilite), and α+M, and the three-phase fields of β+α+M were observed in the Si3N4-rich portion. The α- and β-sialons are not two different compounds but an allotropic transformation phase of the Si–Al–O–N system, and an α solid solution expands and stabilizes with increasing Y2O3 content. Therefore, the formulas of the two sialons should be the same.  相似文献   

6.
Rare-earth-doped Ca-α-SiAlON phosphors, with the compositions of (Ca1−3/2 x RE x ) m /2Si12− m − n Al m+n O n N16− n (RE=Ce, Sm, and Dy, 0.5≤ m =2 n ≤3.0), were prepared by sintering at 1700°C for 2 h under 10 atm N2. The concentration of rare earths varied from 3 to 30 at.% with respect to Ca. The photoluminescence (PL) properties were investigated as functions of the composition of the host matrix (i.e., m ) and the concentration of rare earths (i.e., x ). The results show that the emission properties can be optimized by tailoring m and x . The Ce3+ luminescence originating from the 4 f –5 d interconfigurational transitions is greatly affected by the environment surrounding the Ce3+ ions, which differs from the Sm3+ or Dy3+ luminescence arising from the 4 f –4 f intraconfigurational transitions. X-ray diffraction and scanning electron microscopy were used to explain the composition and concentration dependence of PL properties.  相似文献   

7.
La1− y Sr y Fe1− x Al x O3−δ perovskites were studied as potential materials for solid-oxide fuel cell (SOFC) cathodes. The phase relations in the LaFeO3–SrFeO3−δ–LaAlO3 system were investigated by X-ray powder diffraction analysis. The defect structure of the La1− y Sr y Fe1− x Al x O3−δ perovskites was investigated by Mössbauer spectroscopy and weight-loss analysis. Relations between the nonstoichiometry and the conductivity of the La1− y Sr y Fe1− x Al x O3−δ perovskites were investigated. The incorporation of aluminum ( x ) into LaFe1− x AlxO3 was found to have no influence on the defect structure but to decrease the conductivity. The incorporation of strontium ( y ) into La1− y Sr y Fe1− x Al x O3−δ promotes the formation of anion vacancies and Fe4+ that lead to higher conductivity.  相似文献   

8.
The formation of the melilite solid solution phase (M'), Sm2Si3−xAlxO3+xN4−x, in an α-sialon sample of overall composition Sm0.6Si9.28Al2.69O1.36N14.76, was studied as a function of time in the temperature interval 1375–1525°C. The alpha-sialon ceramic contained only minor amounts of the 21R sialon polytype and some residual grain-boundary glass before heat treatment. In situ studies by high-temperature X-ray diffraction were combined with postsintering heat treatment followed by quenching. The M'-phase was found to be formed by two different mechanisms: either crystallization of the residual grain-boundary liquid or a direct decomposition of the α-sialon phase. The liquid crystallized during the first 10–15 min of heat treatment, yielding a rapid M'-phase formation, and further formation of M'-phase continued at a much slower rate, related to the decomposition of α-sialon.  相似文献   

9.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

10.
Two calcium-doped α-SiAlON compositions (Ca0.6Si10.2Al1.8−O0.6N15.4 and Ca1.8Si6.6Al5.4O1.8N14.2) were prepared by hot pressing at 1600° and 1500°C, respectively, for complete phase transformation from α-Si3N4 to α-SiAlON. Both samples were subsequently fired at different temperatures for different periods of time to study the grain growth of α-SiAlON. Elongated α-SiAlON grains were developed in both samples at high temperatures. The kinetics of grain growth was investigated based on the variations in length and width of the α-SiAlON grains under different sintering conditions. Different growth rates were found between the length and width directions of the α-SiAlON crystals, resulting in anisotropic grain growth in the microstructural development.  相似文献   

11.
Cerium-doped α-SiAlON (M x Si12−( m + n )Al m + n O n N16– n ) materials have been prepared by gas-pressure sintering and post-hot-isostatic-press (HIP) annealing, using four powder mixtures of α-Si3N4, AlN, and either (i) CeO2, (ii) CeO2+ Y-α-SiAlON seed, (iii) CeO2+ Y2O3, or (iv) CeO2+ CaO. Cerium-containing CeAl(Si6– z Al z )(N10– z O z ) (JEM) phase, rather than Ce-α-SiAlON phase, forms in the sample with only CeO2, whereas a single-phase α-SiAlON generates in samples with dual doping (CeO2+ Y2O3 and CeO2+ CaO). On ultraviolet-light excitation, JEM gives one broad emission band with maximum at 465 nm and a shoulder at 498 nm; α-SiAlON shows an intense and broad emission band that peaks at 500 nm. The unusual long-wavelength emissions in JEM and α-SiAlON are due to increases in the nephelauxetic effect and the ligand-field splitting of the 5 d band, because the coordination of Ce3+ in JEM and α-SiAlON is nitrogen enriched.  相似文献   

12.
Reaction hot-pressing behavior of α-Si3N4, Al2O3, A1N, and M2OZ powder mixtures (M = Li, Mg, Ca, Y, Nd, Sm, Gd, Dy, Er, and Yb) forming α'-SiAlON has been studied. Five characteristic temperatures are found to control the densification behavior of these materials. The densification proceeded in three major stages. The first two stages were formation of ternary oxide eutectic and wetting of majority nitride powder. The third stage involved dissolution/melting of intermediate phase. Variation from this behavior sometimes occurs due to localization of wetting liquid at A1N, extremely high melting/dissolution temperature of Mg2Al4SisO18 and Nd and Sm melilite, and secondary precipitation of Dy-α'-SiAlON. The dominant densification mechanism was found to be massive particle rearrangement, irrespective of the wetting and dissolution/melting behavior. The efficiency of this mechanism is mostly affected by the amount of available liquid and less by its viscosity. Fully dense, single-phase ceramics were obtained in all cases except Mg when hot-pressed at a constant heating rate to 1750°C, and considerably lower temperatures for Li, Ca, Gd, Dy, Er, and Yb-SiAlON when held isothermally.  相似文献   

13.
In this paper, a new net-shaping process, an hydrolysis-induced aqueous gelcasting (GC) (GCHAS) has been reported for consolidation of β-Si4Al2O2N6 ceramics from aqueous slurries containing 48–50 vol%α-Si3N4, α-Al2O3, AlN, and Y2O3 powders mixture. Dense ceramics of same composition were also consolidated by aqueous GC and hydrolysis assisted solidification routes. Among three techniques used, the GCHAS process was found to be superior for fabricating defect-free thin wall β-Si4Al2O2N6 crucibles and tubes. Before use, the as purchased AlN powder was passivated against hydrolysis. The sintered β-Si4Al2O2N6 ceramics exhibited comparable properties with those reported for similar materials in the literature.  相似文献   

14.
Duplex αβ,-sialon ceramics with a minimum volume fraction of residual intergranular glass have been prepared using Dy or Sm as the α-sialon stabilizing element. These microstructures contained high aspect ratio β-sialon grains homogeneously distributed in an α-sialon matrix. A number of the larger α-sialon grains contained dislocations and showed a core/shell structure. Dy gave an α-sialon which was stable over a wide temperature range (1350–1800°C) for long holding times, while the use of Sm resulted in less stable α-sialon structures at medium temperatures (1450°C) and the formation of melilite, R2Si3−xAlxO3+xN4−x, β-sialon, and the 21R sialon polytype during prolonged heating. High α-phase contents gave a very high hardness ( H V10 is approximately 22 GPa) but a comparatively low indentation fracture toughness (around 4.4 MPam1/2). Duplex sialons fabricated from powder mixtures corresponding to an α-to-β sialon ratio of around 50:50 resulted in a sialon material with a favorable combination of high hardness (around 22 GPa) and increased toughness (to around 5.5 MPam1/2).  相似文献   

15.
Different SiAION composites based on α'-SiAION are investigated, with respect to the phase relationships, densification behavior, and mechanical properties. The compositions are located on a phase-diagram line parallel to the Si3N4-Y2O3 9AIN compound in the Si3N4-SiO2-AlN-Al2O3-Y2O3-YN system. Analysis of the reaction sequences shows that the formation of the composites is associated with the transient appearance of Y4A12O9 (YAM), yttrium-aluminum-garnet (YAG), melilite, and a nitrogen-rich liquid phase. The small shift of compositions on the Si3N4-Y2O3-9AIN compound phase-diagram line toward the Al2O3-rich side offers the advantage of a higher sinterability and the removal of the melilite phase from a wide range of compositions containing α'-SiAlON and polytypes. The α'/β'-SiAlON composites show better mechanical properties in comparison to pure α'-SiAlON and composites of α'-SiAION and polytypes. A post-heat-treatment causes the crystallization of YAG as a grain-boundary phase and leads to excellent strength retention up to temperatures of 1350°C.  相似文献   

16.
The effect of varying R =[CaO]/([CaO]+[Na2O]) ratio on the crystallization of a rare earth-rich aluminoborosilicate glass (16 wt% RE2O3, RE=Nd or La) is investigated. The crystallization of a silicate apatite with Ca2+ x RE8− x (SiO4)6O2−0.5 x composition ( x ≈0.4–0.7), is responsible for a drop of the rare earth solubility in the melt. When successive nucleation and growth stages are performed, crystallization processes change across the glass series as a consequence of glass-in-glass phase separation. An exotic phase of composition close to Ca10Nd7Si20.75O62 grows at the expense of silicate apatite.  相似文献   

17.
Na x Ca1− x Al2− x Si2+ x O8 plagioclase solid solutions (0≤ x ≤1) were synthesized under sub-solidus conditions using a solid-state reaction technique. The plagioclase formation and the sintering temperature decreased with an increase in x from the anorthite (CaAl2Si2O8; x =0) to the albite (NaAlSi3O8; x =1).
Microwave (MW) dielectric measurements revealed that slow-cooled ( P 1 ) anorthite exhibited higher Q × f values than fast-cooled ( I 1 ) anorthite. Slow cooling also considerably improved the Q × f values of the sodium-rich Na x Ca1− x Al2− x Si2+ x O8 solid solutions (0.8≤ x ≤1), where the highest Q × f value of 17 600 GHz was obtained for slow-cooled Na0.8Ca0.2Al1.2Si2.8O8. The temperature coefficient of resonant frequency (τf) approached zero for 0.8≤ x ≤1.  相似文献   

18.
The oxidation behavior and microstructure of the oxidized surfaces of RE2Si2O7–Si3N4 ceramics were investigated. The high oxidation resistance of these materials at 1400°C is attributed to the minimization of amorphous phases via devitrification to disilicates that are in equilibrium with SiO2, the oxidation product of Si3N4. Crystals of RE2Si2O7 grew out of the surface silicate in prefered orientations that were dictated by crystal structure. The morphology of the microstructure of the oxidized surfaces was shown to be partially dependent on the concentration of impurities; the presence of Ca was found to coincide with the growth of Gd2Si2O7 and Dy2Si2O7 crystals with high aspect ratios.  相似文献   

19.
Dense sialon ceramics along the tie line between Si3N4 and Nd2O3·9AlN were prepared by hot-pressing at 1800°C. The materials were subsequently heat-treated in the temperature range 1300–1750°C and cooled either by turning off the furnace (yielding a cooling rate (Tcool) of ∼50°C/min) or quenching (Tcool≥ 400°C/min). It was found necessary to use the quenching technique to reveal the true phase relationships at high temperature, and it was established that single-phase α-sialon forms for 0.30 x 0. 51 in the formula NdxSi12–4S x Al4.5 x O1. 5 x , N16–1.5 x . The α-sialon is stable only at temperatures above 1650°C, and it transforms at lower temperatures by two slightly different diffusion-controlled processes. Firstly, an α-sialon phase with lower Nd content is formed together with an Al-containing Nd-melilite phase, and upon prolonged heat treatment thus-formed α-sialon decomposes to the more stable β-sialon and either the melilite phase or a new phase of the composition NdAl(Si6-zAlz)N10-zOz. Nd-doped α-sialon ceramics containing no crystalline intergranular phase show very high hardness (HV10 = 22. 5 GPa) and a fracture toughness ( K lc= 4.4 MPa·m1/2) at room temperature. The presence of the melilite phase, which easily formed when slow cooling rates were applied or by post-heat-treatment, reduced both the fracture toughness and hardness of the materials.  相似文献   

20.
Phase relations and phase stabilities have been derived for the ternary systems RE─B─N (RE = Nd, Sm, or Gd) at elevated temperatures (1400°C and above) by means of X-ray powder analysis. Under the experimental conditions selected, various ternary compounds are found to be stable: Nd3B2N4 with the Ce3B2N4 type and (Nd,Sm,Gd)BN2 with the PrBN2 type. Phase equilibria at 1400°C and under 105 Pa of argon are mainly characterized by the incompatibility of the RE metals Nd, Sm, and Gd with BN due to the competing equilibria between the RE tetraborides and the RE mononitrides. Each of the ternary compounds, however, is found to be in a two-phase equilibrium with hex -BN. Because of the different thermodynamic stabilities within the various structure series of ternary rare-earth boron nitrides RE3B2N4 and REBN2, the compound Nd3B2N4 is observed only at temperatures below 1800°C and under 105 Pa of Ar, whereas GdBN2 is found to be stable only at temperatures above 1400°C under a partial pressure of 105 Pa of N2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号