首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C-TRIM, a β-glucan-rich fraction, was added to Hard Red Spring wheat (HRSW) flour to increase soluble fiber content of bread, and to obtain a minimum of 0.75 g/bread serving (0.75 g/30 g or 2.5%) required by FDA for health claim. Three treatments or blends FGT0 (100% wheat flour – control), FGT1 (58% flour, 25% gluten and 17% C-TRIM) and FGT2 (60% flour, 22.5% gluten, and 17% C-TRIM) were used in the study. The total amount of soluble fiber from C-TRIM in FGT1 and FGT2 was 4.07–4.17% which was more than the amount required by FDA. The presence of C-TRIM increased both, the Farinograph water absorption and the arrival time. The dough mixing tolerance index (MTI) was also increased by C-TRIM. The FGT1 had higher stability than FGT2, whereas, the loaf volume of FGT1-B was also significantly higher than FGT0-B control and FGT2-B bread. The DSC results indicated that the amount of freezable-water in C-TRIM treated bread (FGT1-B and FGT2-B) was significantly higher than the control wheat flour bread (FGT0-B). This may be attributed to the higher amount of water absorbed by C-TRIM during bread dough (FGT1-D and FGT2-D) preparation and trapped or bound within the bread matrix after baking as compared to the control. After storage of FGT0-B, FGT1-B, and FGT2-B breads 2, 5, and 7 days storage at 25 °C, 4 °C, and −20 °C, the texture of bread were measured with a Texture Analyzer and the data analyzed statistically. The FTG0-B control bread firmness was significantly higher than FGT1-B and FGT2-B C-TRIM treated breads after 7 days storage at 25 °C. The amount of 0.1 M acetic acid-extractable protein was lower in FGT1-B than the control wheat flour (FGT0-B) sample. In addition, more protein was extracted at pH 7.0 than pH 4.5 because of less charges at neutral pH than pH 4.5. The free zone capillary electrophoresis analysis showed obvious differences in the protein charge and size between the dough and bread.  相似文献   

2.
USE OF APPLE POMACE AS A SOURCE OF DIETARY FIBER IN WHEAT BREAD   总被引:4,自引:0,他引:4  
Chemical analysis of apple pomace revealed that it contains 29.4% neutral detergent fiber and 13.0% pectin. Pomace-flour blends were prepared by incorporating 2, 5, 8 and 11% pomace in wheat flour. Blends were evaluated for their bread making quality. Water absorption increased with the increase of pomace in the blends. Neutralizing the acidity of pomace blended dough did not change the water absorption significantly. As the percentage of pomace in blends increased from 0 to 11, a reduction of 42.8% in loaf volume was observed but neutralization of pomace acidity in dough resulted in only 26.6% reduction in volume under similar conditions. On the other hand loaf weight of the breads, prepared from blends with 11% pomace under unneutralized and neutralized conditions, increased by 7.0 and 3.1%, respectively. With increase of pomace percentage in blends up to 11, the bread firmness increased from 3N in control to 12 and 10N respectively, in unneutralized and neutralized pomace blended dough. Blending of pomace (0–11%) increased baking time from 20 min for control to 33 min for unneutralized and 27 min for neutralized blends. Sensory evaluation of the product revealed that breads containing up to 5% pomace were acceptable.  相似文献   

3.
M. Siddiq  M. Nasir  M.S. Butt  J.B. Harte 《LWT》2009,42(2):464-470
Maize (Zea mays L.) processing produces large quantities of defatted maize germ (DMG) that is being used mainly for animal feed. The objective of this study was to exploit use of this nutrient-rich by-product in bread by replacing wheat flour at 5-20 g/100 g levels. Breads prepared with wheat-DMG flour blends were analyzed for loaf volume, density, instrumental dough hardness and bread firmness, Hunter color (“L”, “a”, “b”, chroma, and hue angle), and selected sensory attributes. Loaf volumes decreased significantly, from 318.8 ml to 216.3 ml, as the DMG flour supplementation was increased from 0 to 20 g/100 g; a similar effect was observed for bread specific volume. Increase in dough hardness (7.56-71.32 N) was directly related to increase in DMG flour levels. Instrumental firmness values were significantly higher for breads containing DMG flours, 61.58 N in 20 g/100 g DMG bread versus 32.84 N for the control bread, made with wheat flour only. The control bread was lighter in color, as shown by higher “L” values, than those having DMG flour, with chroma and hue angle values significantly higher in treatment breads. In general, no differences were observed for the sensory attributes of crumb color, cells uniformity, aroma, firmness, mouthfeel, and off-flavor in breads with up to 15 g/100 g DMG flour, while the overall acceptability scores showed a mixed pattern. The results of this study demonstrated that acceptable quality bread could be made with DMG flour addition at ≤15 g/100 g.  相似文献   

4.
Thermal and non-thermal processing may alter the structure and improve the techno-functional properties of pulses and pulse flours, increasing their range of applications in protein-enhanced foods. The effects of germination and toasting of yellow peas (Pisum sativum) on flour and dough characteristics were investigated. Wheat flour was substituted with raw, germinated and toasted pea flour (30%). The resulting bread-baking properties were assessed. Toasting increased dough water absorption and improved dough stability compared with germinated and raw pea flour (p < 0.05). This resulted in bread loaves with comparable specific volume and loaf density to that of a wheat flour control. Significant correlations between dough rheological properties and loaf characteristics were observed. Addition of pea flours increased the protein content of the breads from 8.4% in the control white bread, to 10.1–10.8% (p < 0.001). Toasting demonstrated the potential to improve the techno-functional properties of pea flour. Results highlight the potential application of pea flour in bread-making to increase the protein content.  相似文献   

5.
Low carbohydrates bread: Formulation,processing and sensory quality   总被引:1,自引:0,他引:1  
A low carbohydrate bread formula was prepared using hard red spring wheat flour, soy protein and vital gluten. Soy protein was treated with ethanol and jet-cooked to remove the beany taste. Vital gluten and soy protein blends were prepared and added to the control flour in order to reduce the final starch content by 52%. The ratio of soy protein:vital gluten was adjusted, based on the Farinograph profile of the blend relative to the control flour. AACC Method 10-09, Straight dough, was used for the baking. The amounts of shortening and yeast were increased, to improve the dough consistency and to reduce beany taste, respectively. A blend of 70% gluten and 30% soy protein was added to replace 50% of the control flour. This blend gave a loaf value similar to the control. Overall, the loaf was softer, darker in colour and the grain was more open than the control. Another blend, with 50% soy nuggets and 50% vital gluten, was added to replace 50% of the control flour. This produced a loaf with 35% less volume, darker colour, and a grain similar to the control. The protein content of the final product was 56%, which is much higher than that reported in the literature. Bread with high protein content is more suitable for use in low carbohydrate diets than bread formulations currently used.  相似文献   

6.
For the development of healthful gluten-free soy bread acceptable to consumers, we evaluated the effects of various processing procedures for soy flour on bread quality, in terms of beany flavour and texture. We pretreated soy flour by both non-heating (raw:NS and germinated:GS) and heating (steamed:SS and roasted:RS) methods. In addition, to improve the loaf volume, we added 1% hydroxypropyl-methylcellulose (HPMC) to RS flour. Lipoxygenase activity was retained in the non-heat-treated flours (279 U/g for NS and 255 U/g for GS), but was significantly reduced in the heat-treated flours (106 U/g for SS and 69 U/g for RS). Moreover, heat-treated flour had higher isoflavone and ferric reducing antioxidant power than had non-heat-treated flour. However, RS flour had the lowest moisture content and lowest L value. The GS bread had the highest specific loaf volume (3.53 cm3/g), followed by NS (2.96 cm3/g), RS (2.25 cm3/g), and SS (1.81 cm3/g) bread. GS bread had the lowest hardness (1.53 N), followed by NS (1.65 N), RS (2.00 N), and SS (3.75 N) bread. The addition of 1% HPMC to RS increased the loaf volume (2.44 cm3/g), but decreased the bread’s hardness (1.80 N). As to the sensory properties, the bread with heat-treated flour was perceived to have a less beany odour and taste than was the bread with non-heat-treated flour. However, the latter had a better appearance than the former. These results indicated that soy flour pretreatment could enhance the loaf volume and reduce the beany flavour of whole soy bread.  相似文献   

7.
Phosphatidylcholine (PC) increases the gas-retaining ability of dough, the dough volume on fermentation and the loaf volume of bread. The cooperation of wheat flour endogenous lipids with PC was examined. More than 90% of the total wheat flour lipids were extracted with chloroform, the extracted lipids comprising glycolipids (33 wt%), non-polar lipids (56 wt%), and phospholipids (11 wt%). The increase in the specific volume of dough with delipidated wheat flour by the addition of PC was smaller than the increase in the specific volume of dough with native wheat flour. The addition of the extracted lipids to delipidated wheat flour restored the increase in dough volume by the addition of PC. The glycolipid fraction of the extracted lipids was most effective for enhancing the action of PC. The results suggest that interaction of PC with wheat flour glycolipids may synergistically increase foam stability to enhance the gas-retaining stability of dough.  相似文献   

8.
The rheological characteristics of twenty wheat flour samples obtained from four organic flour blends and a non-organic control were compared in relation to their ability to predict subsequent loaf volume in the baked bread. The flour samples considered had protein contents that varied between 11–14 g/100 g. Four different rheological methods were employed. Oscillatory stress rheometry on the protein gel extracted from the wheat flour, oscillatory stress rheometry and creep measurement on undeveloped dough samples and biaxial extensional measurements on simple flour–water doughs. None of the fundamental rheological parameters correlated with loaf volume. There was a correlation between the storage modulus of the gel protein and storage modulus for the undeveloped dough (r = 0.85). There was a weak negative correlation between protein content and biaxial extensional viscosity (r = −0.62). Stepwise multiple regression related loaf volume to dough stability time (measured on the Farinograph) and tan (phase angle) for the undeveloped dough samples (overall model r2 = 0.54). The results indicate that the four rheological tests considered could not be used as predictors of subsequent loaf volume when the bread is baked.  相似文献   

9.
Jinhee Yi 《LWT》2009,42(9):1474-1483
This study compares the effects of freezing temperature and rate as well as storage temperature and time on the quality of frozen dough. Yeasted bread dough was frozen using four freezing rates (19-69 °C/h), then stored at −10, −20, −30, or −35 °C for up to 180 days. Dough strength diminished with longer storage time and higher storage temperatures. Cryo-SEM showed that dough stored at −30 and −35 °C had the least damaged gluten network. NMR studies showed that more rapidly frozen dough, and that stored at lower temperatures had lower transverse relaxation (T2) times (9-10 ms). However, dough stored at −20 °C displayed the highest yeast activity among samples. Bread loaf volume decreased with storage time, and bread made from dough stored at −20 °C showed the highest loaf volume. Breads produced from −30 and −35 °C stored dough displayed less change in the texture profile during storage as well as less change in T2 values. Response surface analysis showed that optimal properties occurred at freezing rates of around 19-41 °C/h and storage temperatures of −15 to −20 °C.  相似文献   

10.
Quality of bread supplemented with mushroom mycelia   总被引:1,自引:0,他引:1  
Mushroom mycelia of Antrodia camphorata, Agaricus blazei, Hericium erinaceus and Phellinus linteus were used to substitute 5% of wheat flour to make bread. Bread quality, including specific volume, colour property, equivalent umami concentration (EUC), texture profile analysis, sensory evaluation and functional components, was analysed. Mycelium-supplemented bread was smaller in loaf volume and coloured, and had lower lightness and white index values. White bread contained the lowest amounts of free umami amino acids and umami 5′-nucleotides and showed the lowest EUC value. Incorporating 5% mushroom mycelia into the bread formula did not adversely affect the texture profile of the bread. However, incorporating 5% mushroom mycelia into the bread formula did lower bread’s acceptability. After baking, mycelium-supplemented bread still contained substantial amounts of γ-aminobutyric acid and ergothioneine (0.23–0.86 and 0.79–2.10 mg/g dry matter, respectively). Overall, mushroom mycelium could be incorporated into bread to provide its beneficial health effects.  相似文献   

11.
Although much research has been conducted on wheat flour dough rheology, the principal focus has been the role of the protein fraction. Starch is the main component of flour and plays a key role in dough dynamic properties, particularly during heating. This study assesses the effect of two different waxy flours, a durum and a bread wheat, and their blends with commercial bakers' flour on dough rheology during heating with a concurrent investigation into baking performance. Both waxy flour blends produced similar effects on dough rheological behaviour despite differences in protein content, acting to delay gelatinisation and reduce storage modulus. The main effects in bread were to increase loaf expansion during baking and reduce loaf firmness. It is postulated these effects are largely water mediated, with the higher swelling ability of the waxy starch granules reducing overall water availability and driving complete gelatinisation to higher temperatures.  相似文献   

12.
Rheological properties of gluten-free bread formulations   总被引:1,自引:0,他引:1  
In this study, the rheological properties of rice bread dough containing different gums with or without emulsifiers were determined. In addition, the quality of rice breads (volume, firmness and sensory analysis) was evaluated. Different gums (xanthan gum, guar gum, locust bean gum (LBG), hydroxyl propyl methyl cellulose (HPMC), pectin, xanthan–guar, and xanthan–LBG blend) and emulsifiers (Purawave and DATEM) were used to find the best formulation for gluten-free breads. Rice dough and wheat dough containing no gum and emulsifier were used as control formulations. The rice dough containing different gums with or without emulsifiers at 25 °C showed shear-thinning behavior with a flow behavior index (n) ranging from 0.33–0.68 (except pectin containing samples) and consistency index (K) ranging from 2.75–61.7 Pa sn. The highest elastic (G′) and loss (G″) module were obtained for rice dough samples containing xanthan gum, xanthan–guar and xanthan–LBG blend with DATEM. When Purawave was used as an emulsifier, dough samples had relatively smaller consistency index and viscoelastic moduli values compared to DATEM. The viscoelastic parameters of rice dough were found to be related to bread firmness. Addition of DATEM improved bread quality in terms of specific volume and sensory values.  相似文献   

13.
Bread-making potentials of composite flours containing 90% wheat and 10% acha enriched with 0-15% cowpea flour were investigated. Proximate composition and functional properties of the blends were studied using AOAC standard methods. Bread loaves were prepared from the blends using the straight dough method and evaluated for loaf height, loaf volume, loaf weight and sensory characteristics. Crude protein, crude fat, crude fibre and ash contents increased significantly (p < 0.05) with increase in level of cowpea flour addition, but moisture content was not significantly (p > 0.05) different among the blends. Functional properties, with exception of bulk density and swelling capacity, were significantly (p < 0.05) different among the blends. Average loaf height and loaf volume decreased significantly (p < 0.05) with increased cowpea flour but loaf weight showed opposite trend with significant (p < 0.05) differences as cowpea flour increased. However, the addition of cowpea flour significantly (p < 0.05) decreased the loaf specific volume but all enriched samples were not significantly (p > 0.05) different. Bread samples from composited blends were rated lower than bread from all wheat bread. Bread loaves from enriched composite flour with up to 10% cowpea flour were acceptable to the panelists.  相似文献   

14.
Canary seed is a true cereal with unique composition. The current study employed light and fluorescence microscopy to visualise starch, protein, phenolics and phytate in hairless canary seed (CDC Maria), a cultivar developed potentially for food use. Macronutrients, minerals and vitamins were evaluated in the developed cultivar and compared with a commercial hairy canary seed, cv. Keet. A control common wheat, cv. Katepwa, was grown adjacent to the canary seed varieties. The compositions of the two canary seed varieties were found to be similar with an average of 55.8 g/100 g of starch, 23.7% g/100 g of protein, 7.9% of crude fat, 7.3 g/100 g of total dietary fibre, 1.8 g/100 g of soluble sugar and 2.3 g/100 g of total ash in the whole grain. Regardless of the milling fraction (whole grain flour, white flour or bran), canary seed had more protein and crude fat and less starch, total dietary fibre and soluble sugar than had wheat. It also had higher concentrations of several minerals and vitamins than did wheat. The structure of the canary seed grain exhibited compound starch granules and protein bodies embedded in a protein matrix similar to that of the oat kernel. Baking tests showed that bread made with 100% hairless canary seed flour was significantly lower in loaf volume and crust and crumb colour than was wheat bread. However, bread with loaf volume, specific volume and crust colour comparable to those of the bread control was achieved by using up to 25% of hairless canary seed or 15% of roasted canary seed flour, thus demonstrating its potential for food applications.  相似文献   

15.
Soybean (full‐fat and defatted) and barley flours were incorporated into wheat flour at 5, 10, 15 and 20% substitution levels. The gluten content, sedimentation value and water absorption capacity of the flour blends and the mixing time of the dough decreased with increase in the level of soybean and barley flour separately and in combinations. Protein and glutelin contents increased significantly on blending of soyflour (full‐fat and defatted) to bread wheat flour. The breads prepared from the blends also varied in their loaf weight, loaf volume and sensory characteristics. The bread volume decreased with increasing amount of non‐wheat flour substitution. The crumb colour changed from creamish white to dull brown and a gradual hardening of crumb texture was observed as the addition of soybean (full‐fat and defatted) and barley flours increased. At the higher levels, the acceptability declined because of the compact texture of the crumb and the strong flavour of the product. The addition of 10% of soyflour (full‐fat and defatted) or 15% of barley flour, full‐fat soy + barley or defatted soy + barley flour to bread flour produced acceptable bread.  相似文献   

16.
Apple pomace, a by-product of apple juice industry, is a rich source of fibre and polyphenols. Also in view of the antioxidant property of pomace, it would play an important role in prevention of diseases. Apple pomace procured from fruit juice industry, contained 10.8% moisture, 0.5% ash and 51.1% of dietary fibre. Finely ground apple pomace was incorporated in wheat flour at 5%, 10% and 15% levels and studied for rheological characteristics. Water absorption increased significantly from 60.1% to 70.6% with increase in pomace from 0% to 15%. Dough stability decreased and mixing tolerance index increased, indicating weakening of the dough. Resistance to extension values significantly increased from 336 to 742 BU whereas extensibility values decreased from 127 to 51 mm. Amylograph studies showed decrease in peak viscosity and cold paste viscosity from 950 to 730 BU and 1760 to 970 BU respectively. Cakes were prepared from blends of wheat flour containing 0–30% apple pomace. The volume of cakes decreased from 850 to 620 cc with increase in pomace content from 0% to 30%. Cakes prepared from 25% of apple pomace had a dietary fibre content of 14.2% The total phenol content in wheat flour and apple pomace was 1.19 and 7.16 mg/g respectively where as cakes prepared from 0% and 25% apple pomace blends had 2.07 and 3.15 mg/g indicating that apple pomace can serve as a good source of both polyphenols and dietary fibre.  相似文献   

17.
The impact of addition of gelatinized rice porridge to bread has been investigated on loaf volume, viscoelastic properties and air-bubble structure. We prepared four variety of bread: bread containing rice porridge (rice porridge bread), bread containing gelatinized rice flour (gelatinized rice flour bread), and wheat flour and rice flour breads for references. Instrumental analyses the bread samples were carried out by volume measurement of loaf samples, creep test and digital image analysis of crumb samples. Rice porridge bread showed the maximum specific volume of 4.51 cm3/g, and even gelatinized rice flour bread showed 4.30 cm3/g, which was larger than the reference bread samples (wheat and rice flour breads). The values of viscoelastic moduli of gelatinized rice flour bread and rice porridge bread were significantly smaller (p < 0.05) than those of wheat flour and rice flour breads, which indicates addition of gelatinized rice flour or rice porridge to bread dough encouraged breads softer. Bubble parameters such as mean air- bubble area, number of air-bubble, air-bubble area ratio (ratio of bubble area to whole area) were not significantly different among the bread crumb samples. Therefore, the bubble structures of the bread samples seemed to similar, which implied that difference of viscoelasticity was attributed to air-bubble wall (solid phase of bread crumb) rather than air-bubble. This study showed that addition of gelatinized rice to bread dough makes the bread with larger loaf volume and soft texture without additional agents such as gluten.  相似文献   

18.
BACKGROUND: Roller milling of hull‐less barley generates fibre‐rich fractions (FRF) enriched in non‐starch polysaccharides from the endosperm cell walls (β‐glucans and arabinoxylans). This investigation was initiated to compare the suitability of different baking processes and to determine the optimal conditions for incorporation of barley FRF into pan bread. RESULTS: Addition of FRF from waxy and high‐amylose starch hull‐less barley genotypes was evaluated in pan bread prepared from Canada Western Red Spring (CWRS) and Canada Western Extra Strong (CWES) wheat flour. Three bread processes were used: Canadian short process (CSP), remix‐to‐peak, and sponge‐and‐dough. Addition of 20% FRF (equivalent to enrichment with 4.0 g of arabinoxylans and β‐glucans per 100 g of flour) disrupted dough properties and depressed loaf volume. CSP was not suitable for making FRF‐enriched bread because dough could not be properly developed. FRF‐enriched remix‐to‐peak bread was better, especially for the stronger CWES flour. The better bread quality compared to CSP was probably due to redistribution of water from non‐starch polysaccharides to gluten during fermentation prior to remixing and final proof. The sponge‐and‐dough process produced the best FRF‐enriched bread because of the positive effect of sponge fermentation on gluten development and hydration. FRF was added at the dough stage to fully developed dough. CONCLUSION: The method of bread production strongly influences bread quality. Pre‐hydration of FRF improved bread quality. CWRS and CWES flour produced comparable FRF‐enriched sponge‐and‐dough bread. Addition of xylanase to the sponge‐and‐dough formula improved the loaf volume, appearance, crumb structure and firmness of FRF‐enriched bread. Copyright © 2007 Society of Chemical Industry  相似文献   

19.
Lupin is an economical source of protein, fibre and bioactive compounds, and to obtain these health and nutritional benefits lupin flour has been used in bread production. However, addition of more than 10% lupin flour markedly reduces bread quality mainly due to gluten dilution. The main aim of this research was to retain lupin bread quality enriched with higher percentages of lupin flour (20%) by addition of vital gluten powder (0%, 2%, 3.5% and 5%), investigating the effects of lupin variety (Lupinus albus and L. angustifolius) and two baking systems (rapid and sponge & dough). Impact on bread staling qualities was also determined through texture analysis of samples over a 72-h storage period. Compared to lupin bread with nil gluten addition, significant improvements in loaf volume and crumb texture were observed with addition of gluten powder especially at 5% which increased loaf volume by an average of 20% across lupin sources and baking methods, and crumb softness by 30–50%. Differences were observed between the lupin flour sources. L. angustifolius had a reduced weakening effect when blended with the base flour compared with L. albus. The Sponge & Dough process was found to be more suitable to the inclusion of lupin flour than the rapid process.  相似文献   

20.
Quality attributes of soft wheat products are affected by physicochemical characteristics and rheological properties of wheat flour. Whole-wheat flour has a significant impact on baking qualities (stack height, stack weight, specific volume, and breaking strength) of whole-wheat saltine crackers due to its high water absorption capacity. SRC profiles, alveograph and rheometer parameters were determined to observe the effect of whole-wheat flour on whole-wheat cracker flour blends. NMR technique was utilized to demonstrate the water migration and competition in whole-wheat dough components. Results of SRC testing revealed that the water absorption of whole-wheat flour blends increased with the addition level of whole-wheat flour. The rheological properties (G′, G″, P, L, W values) were influenced significantly by the presence of whole-wheat flour. Results of NMR indicated that water migrated from gluten network into arabinoxylans matrix in whole-wheat dough system, resulting in inferior saltine cracker-baking qualities of whole-wheat flour, i.e., small breaking strength, stack height and specific volume. The stack height, specific volume, and breaking strength of end products showed significant correlations with the arabinoxylans, dough extensibility, and gluten index of whole-wheat flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号