首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Study of corrosion protection of the composite films on A356 aluminum alloy   总被引:1,自引:0,他引:1  
Composite films were fabricated on A356 aluminum alloy by combined anodizing and rare earth deposition.The corrosion protection effect and corrosion behavior of the composite films in 3.5% NaCl solution were studied by electrochemical impedance spectroscopy(EIS).SEM observation indicated that the rare earth Ce film completely sealed the porous structure of the anodic film,and the compositefilms composed of anodic film and Ce film were compact and integrated.According to the characteristics of EIS,the EIS plots of the composite films at different immersion times were simulated using the equivalent circuits of Rsol(QceRce)(QaRa),Rsol(QceRce)(QpRp)(QbRb) andRsol(QpRp)(QbRb) models,respectively.The test results showed that the Ce film at the outer layer of the composite films had good protectioneffect at the initial stage of the immersion corrosion.It effectively helped the anodic film at the inner layer to prevent chloride irons frompenetrating the aluminum alloy matrix.After 18 days,the Ce film lost its anticorrosive property,and the anodic film took the leading role ofthe corrosion protection.When the corrosion time was up to 42 days,the aluminum matrix was not corroded yet.Thus,the higher protectiondegree of the composite films for A356 aluminum alloy was attributed to the synergism effects of anodic film and rare earth Ce film.  相似文献   

2.
对7B50铝合金热轧板在460~490℃范围内进行固溶处理、室温水淬及人工时效,通过室温力学性能测试、慢应变速率拉伸实验及电导率测试,结合光学显微镜,扫描电镜和能谱分析,研究固溶温度对Al-Zn-Mg-Cu铝合金组织与应力腐蚀的影响。结果表明,提高固溶温度能有效减少残留相,增加再结晶的体积分数。当固溶温度从460℃提高到490℃时,屈服强度(σ0.2)和抗拉强度(σb)分别提高20.9%和23.5%,固溶温度从480℃升高到490℃时,强度变化不大,但随着固溶温度升高,伸长率先提高后降低,抗应力腐蚀性能先升高后降低。当固溶温度为480℃时,应力腐蚀敏感性最低,综合性能较好。残留相增多和再结晶程度提高是引起应力腐蚀敏感性提高的主要原因。在腐蚀溶液中,应力腐蚀断口形貌为典型的沿晶断裂。  相似文献   

3.
An earlier paper on the mechanism of localized corrosion of 7075 alloy plate in 3.5 pct NaCl solution showed that pitting of an anodic zone in the vicinity of grain boundaries caused intergranular corrosion of 7075-T651 (peak aged condition). It also showed that overaging to the T7351 temper reduced the difference between pitting potentials of the grain boundaries and grain interiors so that intergranular corrosion could not be sustained. This paper shows that certain changes in the environment strongly affect the difference between pitting potentials of the grain interior and the anodic grain boundary of 7075-T7351. Consequently, the susceptibility for intergranular corrosion is substantially greater in certain environments. Nitrates are most detrimental. The effects of sulfates and pH in chloride + nitrate solutions were relatively small.  相似文献   

4.
《Acta Metallurgica》1985,33(9):1651-1672
A technique has been developed to routinely measure solid-liquid surface energies in eutectic systems. The shape of grain boundary cusps were measured after annealing in a temperature gradient. A numerical model was developed to calculate the temperature around the cusp in alloys which have different thermal conductivities in the two phases. Values for the solid-liquid surface energy and the Gibbs-Thomson constant have been obtained for solid Al in Al-Cu solution, solid Al in Al-Si solution, solid CuAl2 in Al-Cu solution, solid Si in Al-Si solution, solid Sn in Pb-Sn solution and solid Pb in Pb-Sn solution. Grain boundary measurements were also made for the same materials. During the experiment accurate measurements were made of the thermal conductivities for different alloys in the Al-Cu, Al-Si and Pb-Sn systems.  相似文献   

5.
采用微弧氧化(MAO)技术在7050铝合金表面制备了陶瓷膜层,运用扫描电子显微镜(SEM)和能谱分析仪(EDS)表征陶瓷膜微观结构,采用动电位极化曲线、电化学阻抗谱(EIS)和慢应变速率拉伸试验(SSRT)研究了微弧氧化膜对7050铝合金在3.5%(质量分数) NaCl水溶液中腐蚀和应力腐蚀开裂(SCC)行为的影响.结果表明:微弧氧化膜层由表面疏松层与内部致密层组成,表面疏松层主要由Al2O3组成,内部致密层由氧化铝与铝烧结而成.微弧氧化膜层可以有效抑制7050铝合金表面的腐蚀萌生及明显降低腐蚀速率,且使7050铝合金的应力腐蚀敏感性出现显著下降.  相似文献   

6.
The corrosion behaviour of weld metal, partially melted zones and heat affected zones of gas tungsten arc welds in A356 Al-Si alloy with different prior thermal tempers has been studied. Continuous and pulsed current gas tungsten arc welding techniques were used. Potentiodynamic polarization testing was carried out to determine the corrosion resistance. Optical and scanning electron microscopy studies were carried out to determine the corrosion mechanism. The partially melted zone of the welds was found to be attacked severely. A pulsing technique was found to decrease the severity of corrosion damage in the partially melted zone. The prior thermal condition of the alloys was found to influence the corrosion of heat affected zones of welds.  相似文献   

7.
8.
Al-Si合金超高压凝固过饱和固溶体的时效组织与性能   总被引:4,自引:0,他引:4  
M-9.21%Si亚共晶铝硅合金在5.5GPa高压下凝固,获得接近单-α相的超高过饱和固溶体.对超过饱和固溶体进行时效处理,获得了弥散分布的细颗粒Si相,合金的性能有非常大的提高.分析了时效处理温度和保温时间对析出组织的影响.高压凝固获得超高过饱和固溶体后进行时效处理,有可能成为制备某些特殊材料的新方法.  相似文献   

9.
为了降低2024铝合金在海水中的缝隙腐蚀敏感性,采用浸泡和动电位极化、电化学阻抗等研究了氯化镧(LaCl3)对该铝合金缝隙腐蚀行为的影响,并通过原子力显微镜对缝隙试样内、外腐蚀产物膜的形貌进行了观察.结果表明:当海水中LaCl3的质量浓度超过2.0 g·L-1以后,它能有效地减缓2024铝合金在海水中的缝隙腐蚀.这主要是因为LaCl3减缓了缝隙的阴极反应速率,降低了缝隙内、外的氧浓度差,且缝隙内、外生成的均匀致密的腐蚀产物膜降低了Cl-侵蚀性,这些因素抑制了缝隙的萌生与扩展,提高了2024铝合金在海水中的抗缝隙腐蚀能力.  相似文献   

10.
在青岛典型的工业海洋大气环境下,进行硼硫酸阳极氧化6061铝合金与不同表面状态的30CrMnSiNi2A结构钢偶接件的户外大气暴露试验,通过电化学测试、腐蚀产物分析、力学性能检测、断口分析等,研究了偶接件中阳极氧化6061铝合金的腐蚀规律与机理.结果表明:经1 a户外大气暴露试验后,与镀镉钛结构钢偶接的6061阳极氧化铝合金力学性能最优,其强度σb和延伸率δ分别比原始试样下降6.45%和4.39%,远优于与结构钢裸材偶接的阳极氧化6061铝合金试样(分别下降10%和62.28%),略优于未偶接试样(分别下降6.77%和10.74%).沿晶腐蚀和表面点蚀是导致阳极氧化6061铝合金力学性能下降的主要原因,最严重的沿晶腐蚀裂纹深度达150 μm.青岛大气中的硫化物不仅会侵蚀试样表面形成硫酸铝,还会浸入到晶界促进沿晶腐蚀.  相似文献   

11.
采用剥落腐蚀、极化曲线、电导率、力学性能测试和TEM显微组织分析,研究T6、T74及RRA时效工艺对Al-Zn-Mg-Cu-Zr-Er铝合金的组织、力学性能与耐腐蚀性的影响.结果表明:①T6态合金的强韧性最高(σb:663.5 MPa、σ0.2:625.4 MPa、δ:12.46 %),但易腐蚀;与T6态合金相比,T74态合金(σb:640.2 MPa、σ0.2:621.3 MPa、δ:11.34 %)的耐腐蚀性最好,但以牺牲强度为代价,而RRA态合金(σb:657.8 MPa、σ0.2:628.8 MPa、δ:11.98 %)虽强韧性略低于T6态合金,但耐腐蚀性明显改善,综合性能优异.②合金的强度及耐腐蚀性分别与晶内η′析出相和晶界η析出相有关.晶内大量的η′析出相分布越均匀、弥散,尺寸越细小,合金的强度越高;晶界粗大的η析出相分布越离散,合金的耐腐蚀性越好.这与第一性原理计算的η′相与η相的理化性质相吻合.   相似文献   

12.
The usual method of measuring the strain rate sensitive ‘m’ values of superplastic materials through differential cross-head speed is found to result in improperly definedm values;m is found to depend strongly on the strain to which the material is subjected, especially at low strains. In this connection, the shape of the log stress-log strain rate curve is examined for the Al-33 wt pct Cu eutectic alloy. The inherent grain growth of the very fine grains which occurs during deformation, and the strain dependence ofm at low strains, are shown to be the causes of the familiarS shape of the log stress-log strain rate curves for the Al-Cu alloy. At high strains (15 to 20 pct and higher) where the stress is no longer importantly strain sensitive, the log stress-log strain rate curve is a straight line of slope near 0.5. The elongation at fracture also does not go through a maximum but continues to increase slowly to the lowest strain rate examined: 10-7 per s. Formerly Research Assistant, Department of Metallurgy and Materials Science, MIT.  相似文献   

13.
14.
The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ratio (R) of 0.1. Compact-toughness specimens were precracked about 6 mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range (ΔK i), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low ΔK values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range (ΔK cont) than by the effective stress-intensity-factor range (ΔK eff).  相似文献   

15.
The usual method of measuring the strain rate sensitive ‘m’ values of superplastic materials through differential cross-head speed is found to result in improperly definedm values;m is found to depend strongly on the strain to which the material is subjected, especially at low strains. In this connection, the shape of the log stress-log strain rate curve is examined for the Al-33 wt pct Cu eutectic alloy. The inherent grain growth of the very fine grains which occurs during deformation, and the strain dependence ofm at low strains, are shown to be the causes of the familiarS shape of the log stress-log strain rate curves for the Al-Cu alloy. At high strains (15 to 20 pct and higher) where the stress is no longer importantly strain sensitive, the log stress-log strain rate curve is a straight line of slope near 0.5. The elongation at fracture also does not go through a maximum but continues to increase slowly to the lowest strain rate examined: 10-7 per s.  相似文献   

16.
Copper additions reduce the rate of electromigration in aluminum thin film conductors subjected to dc currents of high density. The results of experiments conducted with the goal of understanding the mechanism of this effect are presented. The relationships between lifetimes and the mode of preparation, the composition, and the heat treatment of the samples are explored. The lifetimes of copper bearing aluminum conductors vary in the same way, with respect to temperature and current density, as conductors made of pure aluminum. Data obtained with an electron microprobe on samples which have failed electrically, after prolonged exposure to current, show the coincidence of crack formation and copper depletion in the surrounding area. Analysis along the length of current stressed samples, also with the microprobe, indicates that under the effect of current, copper atoms migrate at a considerably faster rate than aluminum atoms. Gold and silver additions in aluminum do not have the same effect as copper additions. It is believed that this difference is due to variations in adsorption of different atomic species on aluminum grain boundaries.  相似文献   

17.
18.
Conclusions The composition of oxide layers on granules is affected most by magnesium, the magnesium content of the layers being strongly dependent on the conditions of casting of granules. The thickness of surface oxide films on aluminum alloy granules produced by vibratory casting in water does not exceed 5–6 nm. In the casting of granules in water it is necessary to control the latter's impurity content. This applies particularly to closed water circulation systems, in which the degree of contamination of water increases with time.Translated from Poroshkovaya Metallurgiya, No. 8(260), pp. 4–9, August, 1984.  相似文献   

19.
针对Al-Zn-Mg-Cu系铝合金热处理工艺中存在的不足,提出固溶-降温析出-再固溶的三级固溶热处理工艺,通过金相显微镜和扫描电镜(SEM)分析以及硬度、电导率、腐蚀剥落性能测试,研究三级固溶处理对Al-Zn-Mg-Cu系铝合金锻件的微观组织及剥落腐蚀行为的影响.结果表明:三级固溶处理可使晶界析出相明显粗化、离散度增大.同时,三级同溶处理可使Al-Zn-Mg-Cu系铝合金抗剥落腐蚀性能得到明显改善,抗拉强度仍能保持在610 MPa左右;与常规固溶相比,该合金经三级固溶+峰值时效处理后的电导率由30.8%(IACS)提高到33.2%(IACS),抗剥蚀等级由EB+提高为EA.  相似文献   

20.
采用电导率、抗腐蚀性能测试及透射电镜观察等手段,研究了回归再时效处理过程中回归加热速率(340,57及4.3℃·min-1)对7050铝合金组织与抗晶间腐蚀和应力腐蚀性能的影响.研究发现,回归加热速率对7050铝合金的抗腐蚀性能有显著的影响,在顾及合金的综合力学性能的情况下,中等回归加热速率能使合金具有较好的抗腐蚀性能.7050铝合金在中速(57℃·min-1)回归加热条件下,经适当地回归再时效处理后,晶间腐蚀最大深度为50μm,等级为3级,比在340℃·min-1和4.3℃·min-1回归加热速率条件下具有更好的抗腐蚀性能,其晶界析出相为较粗大的非连续颗粒,并有较宽的无沉淀析出带.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号