共查询到20条相似文献,搜索用时 15 毫秒
1.
100MeV强流回旋加速器要求引出质子束流强达到200μA,并计划提供脉冲束流。为达到高的平均流强,并具有提供脉冲束的能力,轴向注入系统的设计有两种方案,即对应于1#和2#注入线,如图1所示。 相似文献
2.
介绍了SMCAMS外注入系统的物理设计,包括方案选择、光学计算、粒子轨迹计算和注入系统在工程上的考虑. 相似文献
3.
串列加速器升级工程中的100 MeV紧凑型回旋加速器,设计用于产生强流质子束,在这样的紧凑型机器中,高亮度离子源和高效率注入系统成为产生强流束的瓶颈问题之一。从我们的30 MeV回旋加速器的运行经验可知,ES(静电透镜和螺线管透镜)注入系统能够有效地控制注入过程中的束包络。然 相似文献
4.
100MeV回旋加速器中心区实验台架的注入能量为30keV,采用的横向聚焦元件包括1个螺线管透镜(S:Solenoid),1对四极磁铁(Q:Quadrupole)。注入线的设计有两种考虑,分别对应于不考虑和考虑聚束器的情况。两种设计的布局如图1所示。 相似文献
5.
李振国 《中国原子能科学研究院年报》2007,(1)
100MeV回旋加速器中心区实验台架工作在2007年取得了重要进展。所有设备已安装、调试完毕,通过分系统和联机调试,从离子源到注入偏转板出口的束流传输效率达到了75%,内靶已出束,取得了初步的实验成果。此实验台架的建成为100MeV强流回旋加速器的磁场、高频、注入、引出、中心区、控制、束流测量等系统的结构设计及束流动力学的验证提供了一个完整的实验平台。中心区实验台架装置示于图1。 相似文献
6.
做为串列加速器升级工程的一部分,将建造1台100 MeV的紧凑型回旋加速器,用于产生强流质子束。由于回旋加速器中心区接收度的限制,基于TRIUMF的经验研制了1台新的多峰负氢离子源,以产生更高的质子流强,并将发射度控制在要求的范围内。该离子源包括1个圆柱形的等离子体腔(内径98 mm; 高150 mm)、10对提供多峰场和虚拟电子过滤磁场的永磁铁、三电极引出系统、内嵌永磁铁的端盖和可接1对或多对灯丝的水冷接线柱。在引出系统中,引出电极内安装1对小的永磁铁以过虑被引出的电子,环形的电磁x-y导向磁铁套在引出系统的地电极上。截止到2003年10… 相似文献
7.
TRIUMF的加速器设施ISAC成功地展示了基于ISOL方法的放射性核束装置的驱动加速器,强流H回旋加速器是一个非常合理的选择。因此,中国原子能科学研究院根据自身的技术特点和国防核技术需求背景分析,建议研制一台75~100 MeV、200~500μA H~-回旋加速器做为驱动加速器,建设北京串列加速器升级工程,这将是一个由多台加速器灵活组合而成的、包括放射性核束靶站的多用途核科学研究设施。 相似文献
8.
通过理论分析和仿真模拟对中国原子能科学研究院一台100 MeV强流质子回旋加速器的束流切割器进行了优化设计,并同时研制出两套束流切割器进行实测对比,选定最佳方案。该切割器波形选择为回旋加速器高频频率的16分频28 MHz正弦波,具有结构紧凑体积小、螺旋谐振器Q相对较高、加载切割电压较高且功率损耗低、无需水冷等特点,同时配套研制了一套开口形状为正方形的选束狭缝装置。最后在实验终端成功获得了能量为100 MeV、重复频率为56 MHz的脉冲质子束。该切束器的成功研制不仅满足了核数据测量的应用需求,还极大地推动了回旋加速器束流脉冲化技术的发展。 相似文献
9.
为逐步研究掌握强流负氢离子源技术,“十一五”期间,将完成15-20mA强流负氢多峰离子源的技术研究设计。为此目的,在原有离子源以及参考TRIUMF离子源的基础上,重新设计了1台离子源。本文主要介绍其磁铁的布局设计。 相似文献
10.
强流回旋加速器静电注入偏转板设计方法研究 总被引:3,自引:3,他引:0
从离子在回旋加速器静电注入偏转板中的运动方程出发,对注入偏转板完成了了计算机辅助设计,并给出辅助加工数据。计算设计和束流仿真过程全部在PC-486微机上完成,形成一个注入偏转板设计软件包,并且可以与已开发的“智能化回旋加速器主磁铁CAE系统”配套使用,使回旋加速器的整机开发前进了一步。 相似文献
11.
12.
以CYCIAE30回旋加速器的轴向注入系统为基础,计算了该系统中束流光学特性,并与实际运行结果进行了比较,证明了该文采用的理论和计算方法是正确的。在此基础上,对CYCIAE70的轴向注入系统进行概念设计,得到了优化的设计结果。 相似文献
13.
14.
利用现有强流负氢离子源实验台架,充分考虑现有注入线和中心区的设计,建立强流脉冲化实验装置,将几十至百keV量级的强流束进行脉冲化,将70MHz(中心实验台架10MeV紧凑式回旋加速器的高频频率)连续波负氢束脉冲化为重复频率1~8MHz,脉冲宽度约为10ns。 相似文献
15.
CYCIAE-100MeV回旋加速器非标机械结构主要包括离子源、轴向注入、中心区、高频腔体、频率自动微调、高频功率馈入、剥离靶引出、磁场调谐系统、对中线圈、径向束流探针、真空系统、相位探测系统、磁场测量系统、主线圈、束流诊断系统、束流调试靶、质子管道及传输元件、举升系统、运输安装与调节系统等。 相似文献
16.
17.
中国原子能科学研究院建成了100 MeV紧凑型强流质子回旋加速器,其引出能量为75~100 MeV,流强为200μA。安装在回旋加速器狭小磁极气隙的中心区与螺旋静电偏转板是关键部件,其结构设计涉及磁场、高频电场、高压静电场、真空、传热等方面。本文介绍了中心区与螺旋静电偏转板的结构设计及使用情况。在设计过程中,采取加大绝缘距离、优化高频连接结构、增加杂散束流阻拦装置等措施,解决了中心区与螺旋静电偏转板在强流注入时可靠工作的问题。本文对螺旋偏转板进行了传热分析,得出了该螺旋偏转板在强流束注入时的温度分布。设计的中心区和螺旋偏转板已安装在加速器上,20μA/100 MeV的引出束流通过了12h稳定性测试,在加速器测试过程中,中心区工作稳定可靠。 相似文献
18.
由于高频谐振腔、对中线圈和束流诊断装置的安装需要,要求磁极的间隙增加约1cm,显然在中心区和加速区的磁场分布都将改变,因此,为满足加速器的束流动力学的需要,必须在改变励磁安匝数的同时,重新设计磁极的间隙、镶条、芯柱等磁铁参数。在2005年,除了设计确定磁铁的几何参数、磁场分布外,许多工程方面的工作得到了推进,其中包括机械结构设计和建造的前期准备工作。 相似文献
19.
紧凑型的回旋加速器的磁场分布范围跨度较大,且对磁场测量的精度要求较高,磁场的测量误差直接影响到后续主磁铁的镶条垫补。磁场测量系统主要用于主磁铁中心平面上磁场分布的测量,对主磁场的测量精度及测量点相对位置精度要求极高,磁场偏离理想场的微小误差对粒子束流的运动有相当大的影响。磁场测量点的选取采用极坐标,最后给出磁场值的极坐标点分布结果。 相似文献
20.
北京放射性核束装置,简称为BRIF,是一个新的基于放射性核束装置的加速器工程。该工程由以下几个部分组成:100MeV回旋加速器、在线同位素分离系统、现有的串列加速器注入器改造、超导直线增能器、各种不同的物理实验终端和一个同位素生产研究靶站。作为驱动加速器,100MeV的H^-回旋加速器能够提供75~100MeV、200~500μA以上的质子束流。对于最终能量不高于100MeV,束流强度低于lmA的回旋加速器,选择紧凑型磁铁,采用加速H^-、剥离引出的技术路径,将使得加速器结构更小,也更便宜。 相似文献