首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
There are four generally recognized methods of separating undersirable portions of a fluid from that fluid: mechanical, which is filtration, settling or centrifuging; electrostatic precipitation; chemical, such as solvent extraction precipitation or adsorption; and thermal, such as distillation and freeze drying. Techniques of separation as applied to fats and oils are discussed in this paper.  相似文献   

2.
Raw marine oils containing from 2–8 ppm DDT group pesticides, 0.00–0.03 ppm dieldrin, and 3–13 ppm polychlorinated biphenyls (as Aroclor 1254) were subjected to pilot plant refining, hydrogenation, and deodorization for margarine stock production. Residues of all 3 groups were reduced to below detectable limits (0.06 ppm, 0.01 ppm, and 0.5 ppm for ΣDDT, dieldrin, and polychlorinated biphenyls [determined as decachlorobiphenyl], respectively) as a result of processing.  相似文献   

3.
Use of bleaching,clays, in processing edible oils   总被引:2,自引:2,他引:0  
Bleaching of fats and oils is a process where by the clay adsorbent is mixed intimately with the oil under specified conditions to remove unwanted color bodies and other contaminants. This paper describes the process and discusses the parameters and economics involved.  相似文献   

4.
5.
Types of interesterification discussed are (a) interchange between a fat and free fatty acids, in which the most important reaction is the introduction of acids of low mol wt into a fat with higher fatty acids; (b) interchange between a fat and an alcohol, e.g., with glycerol, in order to produce emulsifiers like monoglycerides; (c) rearrangement of fatty acid radicals in triglycerides, the so-called transesterification which in recent years has taken on the same importance as hydrogenation or fractionation. In natural fats, the fatty acid radicals are not usually randomly distributed but become so by rearrangement; the distinctive physical properties of natural fats and oils can be changed within limits by this transesterification. Well-known examples are cocoa butter, palm oil, and lard. More important is the transesterification of a mixture of different fats and oils; e.g., the combination of hydrogenation and interesterification allows the production of a solid fat with high linoleic acid content. The composition of glycerides after random interesterification can be calculated by formulas. Distinct from random is such directed interesterification. This is done by working at low temperatures that glycerides with higher melting point crystallize from the reaction mixture. Directed interesterification can be combined with fractionation, for instance, to get a higher yield of liquid fraction from palm oil than is obtained by fractionation alone. The transesterification process can be performed in a batch or continuously. A small amount of metallic sodium or sodium ethylate is used as catalyst, which is destroyed by water or acid and removed after the reaction.  相似文献   

6.
The treatment of crude edible oils with sodium hydroxide solutions is the standard refining procedure in the industry. Refining with NaOH removes free fatty acids, some phosphatides, proteinaceous matter and some colored material. Up to now experience has shown that most oils cannot be deodorized satisfactorily unless they have been caustic-refined. In the past, when most crude oils contained several per cent of free fatty acids, caustic-refining offered itself as a particularly suitable means of preparation for further processing. In recent years the free fatty acid content of crude oils has been, in most cases, only a fraction of 1%, which could very readily be removed in the process of deodorization. A prerequisite for this would be to remove by some other means those substances that interfere with satisfactory deodorizing. It has been found that the process of bleaching can be used for this purpose if the oil is pretreated with 0.1–0.5% phosphoric acid and bleached at 325–350 F. The amount of bleaching clay required depends on the type of oil and its quality, but with many oils up to 2% clay is satisfactory. The amount of phosphoric acid necessary also depends on the type of oil. One of nine papers presented in the symposium “Processing of Edible Oils,” AOCS Meeting, Ottawa, September 1972.  相似文献   

7.
Physical refining of edible oils   总被引:1,自引:0,他引:1  
Physical refining of edible oils offers several advantages over alkali refining. The method described for physical refining of rapeseed oil involves several novel factors, including the availability of cold-pressed rapeseed oil low in phosphatide content and deacidification/deodorization in a film molecular evaporator. Parameters are presented from a pilot plant unit with an output of 500 metric tons per year. Further applications of the technology are proposed, including the processing of oils to pharmaceutical-grade products.  相似文献   

8.
The frequency dependence (1–60 MHz) of the ultrasonic attenuation coefficient of canola oil, corn oil, olive oil, peanut oil, safflower oil, soybean oil, and sunflower oil was measured at 25°C. The attenuation coefficient of all the oils could be described by the relation: α ∼ Af n(with A between 6 and 40 × 10−12, and n between 1.74 and 1.86).  相似文献   

9.
10.
Crude oils obtained by oilseed processing have to be refined before the consumption in order to remove undesirable accompanying substances. The traditional alkali refining is often replaced by physical refining in which the use of chemicals is reduced. The most widely used method is steam refining. The crude oil quality is very important in order to obtain high quality refined oil. Furthermore, the oil should be efficiently degummed to remove phospholipids as well as heavy metals and bleached to remove pigments. The most important step consists of the application of superheated steam under low pressure and at temperatures higher than 220 °C. Both free fatty acids and objectionable volatiles, formed by cleavage of lipid oxidation products, are removed. A disadvantage is the partial loss of tocopherols. Side reactions, particularly isomerization of polyunsaturated fatty acids, should be minimized. The quality of physically refined oil is close to that of alkali refined oils, but losses of neutral oil are lower and the environment is less polluted. Among other methods of physical refining the application of selective membranes is promising.  相似文献   

11.
This paper discusses the use of a counter current deodorizing process in which oil flows by gravity downward through a deaerating device and a specially designed tower. The steam is let in at the bottom and flows counter-current to the oil flow. The process results in more effective use of vacuum and in considerable steam economy. The application of Dowtherm as a heating medium for the process is discussed.  相似文献   

12.
Crude soybean and cottonseed oil were processed using simulated commercial processing procedures to determine if oil processing would remove chlorinated pesticide contaminants of either natural or spiked origin. Two crude oil lots were spiked with endrin, DDT, DDE, aldrin, dieldrin, heptachlor and heptachlor epoxide before processing. Representative samples of crude oil and products following each processing step were analyzed for pesticide contamination. Results indicated that alkali-refining or subsequent bleaching did not reduce chlorinated pesticide contamination. Hydrogenation prior to deodorization reduced endrin contamination. Deodorization, with or without hydrogenation, eliminated chlorinated pesticides. The results of this study indicate that normal commercial processing of crude vegetable oils for human consumption effectively removes any chlorinated pesticides which may be present in crude oils. It is hypothesized that chlorinated pesticide removal is achieved by volatilization during deodroization, which is supported by known volatilization characteristics, similarity of behavior in pesticides studied, and absence of the pesticide or its conversion products in the finished oils, or both.  相似文献   

13.
Minor constituents of vegetable oils during industrial processing   总被引:6,自引:10,他引:6  
We report the effects of individual steps of industrial refining, carried out in Brazil, on the alteration of selected minor constituents of oils, such as corn, soybean, and rapeseed oils. Total sterols, determined by capillary gas chromatography (GC), decreased by 18–36% in the fully refined oils, compared with the crude oils. The total steradienes, dehydration products of sterols, were determinedvia a simple clean-up on a short silica gel column, followed by high-performance liquid chromatography (HPLC) with ultraviolet detection. The level of steradienes, normally not present in crude oils, increased after each refining step, especially after deodorization. Thus, the content of steradienes increased after deodorization by about 15- to 20-fold in corn and soybean oils, and by about 2-fold in rapeseed oil. The total steryl esters were also determinedvia clean-up on a short silica gel column, followed by HPLC with evaporative light scattering mass detection. A minor decrease in the level of steryl esters was observed after complete refining. The individual tocopherols and tocotrienols were determined by HPLC with a fluorescence detector. The level of total tocopherols and tocotrienols decreased by about 2-fold after complete refining of corn oil and by about 1.5-fold in soybean and rapeseed oils. In all three cases, maximum reduction of tocopherols was observed after the deodorization step. The level of polymeric glycerides, determinedvia clean-up on a short silica gel column followed by size-exclusion HPLC, increased to some extent (0.4–1%) during refining. The level oftrans fatty acids, determined by capillary GC, also increased to a substantial extent (1–4%) after refining. Part of doctoral thesis of Roseli Ap. Ferrari to be submitted to Faculdade de Engenharia de Alimentos, Universidade de Campinas, Campinas, Brazil.  相似文献   

14.
Almost all fats and oils are subjected to so‐called bleaching during processing. Originally bleaching was only used to reduce the colour. Today, however, the bleaching step is used mainly to remove or convert undesired by‐products to harmless ones from fats and oils. This will guarantee that such compounds do not interfere with the processing and that the requirements for human food are being met.  相似文献   

15.
Reactors for hydrogenation of edible oils   总被引:1,自引:0,他引:1  
Due to the characteristics of the hydrogenation of edible oil, by far the most common type of reactor has been the batch-type shurry hardener. Although continuous reactors offer several advantages compared to batch reactors, they are seldom used in the industry. This review paper describes the most commonly used full-scale reactors, both batch and continuous. Several different laboratory reactors are also described. The experimental results obtained from those reactors indicate that it is possible to achieve selectivites and reaction rates in a continuous reactor as high as in a slurry batch reactor.  相似文献   

16.
Hydrogenation of edible oils is an important process in the food industry to produce fats and oils with desirable melting properties and an improved shelf life. However, beside the desired hydrogenation reaction trans fatty acids are formed as well. As several studies indicate a negative health effect of trans fatty acids, consumer demands will urge the food producers to lower the content of trans fatty acids in their products. This article describes the option to reduce the trans levels in the hydrogenation of an edible oil by changing process conditions and by applying alternative low trans heterogeneous catalysts.  相似文献   

17.
Literature values of density, viscosity, adiabatic expansion coefficient, thermal conductivity, specific heat (constant pressure), ultrasonic velocity, and ultrasonic attenuation coefficient are compiled for a range of food oils and water at 20°C, and a series of empirical equations are suggested to calculate the temperature dependency of these parameters. The importance of these data to the application of ultrasonic particle-sizing instruments to food emulsions is discussed.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号