首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipid core nanoparticles (LDE) resembling LDL behave similarly to native LDL when injected in animals or subjects. In contact with plasma, LDE acquires apolipoproteins (apo) E, A‐I and C and bind to LDL receptors. LDE can be used to explore LDL metabolism or as a vehicle of drugs directed against tumoral or atherosclerotic sites. The aim was to investigate in knockout (KO) and transgenic mice the plasma clearance and tissue uptake of LDE labeled with 3H‐cholesteryl ether. LDE clearance was lower in LDLR KO and apoE KO mice than in wild type (WT) mice (p < 0.05). However, infusion of human apoE3 into the apoE KO mice increased LDE clearance. LDE clearance was higher in apoA‐I KO than in WT. In apoA‐I transgenic mice, LDE clearance was lower than in apoA‐I KO and than in apoA‐I KO infusion with human HDL. Infusion of human HDL into the apoA‐I KO mice resulted in higher LDE clearance than in the apoA‐I transgenic mice (p < 0.05). In apoA‐I KO and apoA‐I KO infused human HDL, the liver uptake was greater than in WT animals and apoA‐I transgenic animals (p < 0.05). LDE clearance was lower in apoE/A‐I KO than in WT. Infusion of human HDL increased LDE clearance in those double KO mice. No difference among the groups in LDE uptake by the tissues occurred. In conclusion, results support LDLR and apoE as the key players for LDE clearance, apoA‐I also influences those processes.  相似文献   

2.
It was previously reported that a protein-free microemulsion (LDE) with structure roughly resembling that of the lipid portion of low density lipoprotein (LDL) was presumably taken up by LDL receptors when injected into the bloodstream. In contact with plasma, LDE acquires apolipoproteins (apo) including apo E that would be the ligand for receptor binding. Currently, apo were associated to LDE by incubation with high density lipoprotein (HDL). LDE-apo uptake by mononuclear cells showed a saturation kinetics, with an apparent K m of 13.1 ng protein/mL. LDE-apo is able to displace LDL uptake by mononuclear cells with a K i of 11.5 ng protein/mL. LDE without apo is, however, unable to displace LDL. The uptake of 14C-HDL is not dislocated by increasing amounts of LDE-apo, indicating that HDL and LDE-apo do not bind to the same receptor sites. In human hyperlipidemias, LDE labeled with 14C-cholesteryl ester behaved kinetically as expected for native LDL. LDE plasma disappearance curve obtained from eight hypercholesterolemic patients was markedly slower than that from 10 control normolipidemic subjects [fractional clearance rate (FCR)=0.02±0.01 and 0.12±0.04 h−1, respectively; P<0.0001]. On the other hand, in four severely hypertriglyceridemic patients, LDE FCR was not significantly different from the controls (0.07±0.03 h−1). These results suggest that LDE can be a useful device to study lipoprotein metabolism.  相似文献   

3.
A protein-free microemulsion (LDE) with a lipid composition resembling that of low-density lipoprotein (LDL) was used in metabolic studies in rats to compare LDE with the native lipoprotein. LDE labeled with radioactive lipids was injected into the bloodstream of male Wistar rats, and plasma kinetics of the labeled lipids were followed on plasma samples collected at regular intervals for 12 h after injection. The 24-h LDE uptake by different tissues was also measured in tissue samples excised after the animals had been sacrificed. We found that LDE plasma kinetics were similar to those described for native LDL [fractional clearance rate (FCR) of cholesteryl ester, 0.42±0.11 h−1]. The major site for LDE uptake was the liver, and the tissue distribution of the LDE injected radioactivity was as one would expect for LDL. To test whether LDE was taken up by the specific LDL receptors, the LDE emulsion was injected into rats treated with 17α-ethinylestradiol, which is known to increase the activity of these receptors; as expected, removal of LDE from the bloodstream increased (FCR=0.90±0.35 h−1). On the other hand, saturation of the receptors that remove remnants by prior infusion of massive amounts of lymph chylomicrons did not change LDE plasma kinetics. These results indicate that LDE is cleared from plasma by B,E receptors and not by the E receptors that remove remnants. Incorporation of free cholesterol into LDE increased LDE plasma clearance. Incubation studies also showed that LDE incorporates a variety of apolipoproteins, including apo E, a ligand for recognition of lipoproteins by specific receptors. Our data suggest that LDE can be a useful tool to test LDL metabolism and B,E receptor function.  相似文献   

4.
The objective of this study was to evaluate the kinetics of both free and esterified forms of cholesterol contained in a emulsion that binds to LDL receptors (LDE) in subjects with heterozygous familial hypercholesterolemia (FH), and the same subjects under the effects of high-dose simvastatin treatment, as compared with a control normolipidemic group (NL). Twentyone FH patients (44.0±13.0 yr, 12 females, LDL cholesterol levels 6.93±1.60 mmol/L) and 22 normolipidemic patients (44.0±15.0, 10 females, LDL cholesterol levels 3.15±0.62 mmol/L) were injected intravenously with 14C-cholesteryl ester and 3H-cholesterol. FH patients were also evaluated after 2 mon of 40 or 80 mg/d simvastatin treatment, and plasma samples were collected over 24 h to determine the residence time (RT, in h) of both LDE labels, expressed as the median (25%; 75%). The RT of both 14C-cholesteryl ester and 3H-cholesterol were greater in FH than in NL [FH: 36.0 (20.5; 1191.0), NL: 17.0 (12.0–62.5), P=0.015; and FH: 52.0 (30.0; 1515.0); NL 20.5 (14.0–30.0) P<0.0001]. Treatment reduced LDL cholesterol by 36% (P<0.0001), RT of 14C-cholesteryl ester by 49% (P=0.0029 vs. baseline), and 3H-cholesterol RT by 44% (P=0.019 vs. baseline). After treatment, the RT values of 14C-cholesteryl ester in the FH group approached the NL values (P=0.58), but the RT of 3H-cholesterol was still greater than those for the NL group (P=0.01). The removal of LDE cholesteryl esters and free cholesterol was delayed in FH patients. Treatment with a high dose of simvastatin normalized the removal of cholesterol esters but not the removal of free cholesterol.  相似文献   

5.
The effect of varying the dietary sunflower oil/sucrose (SO/SU) ratio on rat plasma lipid concentration and lipoprotein distribution was studied. Four groups of 10 rats were fed for 4 weeks diets with varying SO/SU ratios. Lipoprotein components were then estimated in whole plasma and after cumulative density ultracentrifugation. Whole plasma triacylglycerol (TG), total cholesterol (TC) and free cholesterol (FC) decreased with increasing SO/SU ratio; the CE/FC ratio increased, because CE remained virtually unaltered. Plasma TG-lowering was due to a decrease in VLDL and LDL-TG. Protein, CE and FC in d=1.063–1.100 g/ml (HDL2b) and d=1.100–1.125 g/ml (HDL2a) lipoproteins decreased upon increasing the SO/SU ratio. In contrast, in d=1.125–1.200 g/ml (HDL3) lipoproteins, there was a concomitant increase in these components. Although increasing the SO/SU ratio effected more protein and CE transportation in HDL3 and less in HDL2, the total amount of these components in high density lipoproteins (d=1.063–1.200 g/ml) remained constant. Apo A-I and apo C-III decreased in HDL2 but increased in HDL3 upon increasing the SO/SU ratio. Also, HDL2 apo E, and the apo C-II/apo C-III and small apo B/large apo B ratios in VLDL and LDL were lowered by increasing the SO/SU ratio. The hepatic VLDL-TG output during isolated liver perfusion was lowest in rats fed the diet with the highest SO/SU ratio. In perfusate, like in plasma, the VLDL and LDL apo C-II/apo C-III ratio, as well as the small apo B/large apo B ratio, decreased upon increasing the dietary SO/SU ratio. The results indicate that there can be appreciable diet-dependent variations in plasma HDL subgroup distribution in spite of unchanged total HDL levels.  相似文献   

6.
While it is known that the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to the apo B-containing lipoproteins is increased in patients with diabetes, the extent to which the various lipoprotein fractions engage in neutral lipid exchange and the magnitude to which triglyceride (TG) is translocated is not known. To examine in greater detail neutral lipid net mass transfer in diabetes, the HDL subfractions and the apo B-containing lipoproteins were separated, and the net mass transfer of CE and TG was compared to that of control subjects. In both groups, bidirectional transfer of CE from HDL3 to very low density lipoprotein (VLDL) + low density lipoprotein (LDL) and of TG from VLDL+LDL to HDL3, took place, but this process was significantly greater (P<.01) in insulin-dependent diabetes mellitus (IDDM). In contrast, CE and TG accumulated in HDL2 to a similar degree in normal and IDDM subjects. In recombination experiments with each of the apo B-containing lipoproteins, IDDM VLDL had a greater capacity to facilitate the exchange of core lipids from both IDDM and control HDL3: on the other hand, LDL from IDDM and control subjects both donated TG and CE to HDL2 and affected little change in HDL3. These findings indicate that all the major plasma fractions normally participate in the trafficking of CE and TG among the lipoproteins during neutral lipid transfer and show that the principal perturbation in cholesteryl ester transfer in IDDM involves altered interaction between VLDL and the HDL3 subfraction.  相似文献   

7.
Dyslipoproteinemia of the Nagase analbuminemic rat (NAR) is characterized by elevated concentrations of VLDL and LDL attributed to increased rates of liver lipoprotein synthesis. Increased lysophosphatidylcholine (LPC) in NAR HDL has been attributed to high plasma LCAT activity. We show here that, as compared with Sprague-Dawley rats (SDR), NAR plasma triacylglycerol (TAG), total cholesterol (TC), HDL TAG, protein, total phospholipids (PL), LPC, and PS are increased. These alterations rendered the NAR HDL particle more susceptible to the activity of the enzyme hepatic lipoprotein lipase (HL), which otherwise was unaltered in our study. Fractional catabolic rates in blood of the autologous 125I-apoHDL (median and lower quartile values), were, respectively, 0.231 and 1.645 (n=10) in NAR as compared with 0.140 and 0.109 (n=10) in SDR (P=0.012), corresponding to synthesis rates of HDL protein of 89.8±33.7 mg/d in NAR and 17.4±6.5 mg/d in SDR (P=0.0122). Furthermore, Swiss mouse macrophage free-cholesterol (FC) efflux rates, measured as the percent [14C]-cholesterol efflux/6 h, were 8.2±2.3 (n=9) in NAR HDL and 11.2±3.2 (n=10) in SDR HDL (P=0.03). Therefore, in NAR the modification of the HDL composition slows down the cell FC efflux rate, and together with the increased rate of plasma HDL metabolism influences the reverse cholesterol transport system.  相似文献   

8.
We hypothesized that consumption of saturated fatty acids in the form of high‐fat ground beef for 5 weeks would depress liver X receptor signaling targets in peripheral blood mononuclear cells (PBMC) and that changes in gene expression would be associated with the corresponding changes in lipoprotein cholesterol (C) concentrations. Older men (n = 5, age 68.0 ± 4.6 years) and postmenopausal women (n = 7, age 60.9 ± 3.1 years) were assigned randomly to consume ground‐beef containing 18% total fat (18F) or 25% total fat (25F), five patties per week for 5 weeks with an intervening 4‐week washout period. The 25F and 18F ground‐beef increased (p < 0.05) the intake of saturated fat, monounsaturated fat, palmitic acid, and stearic acid, but the 25F ground‐beef increased only the intake of oleic acid (p < 0.05). The ground‐beefs 18F and 25F increased the plasma concentration of palmitic acid (p < 0.05) and decreased the plasma concentrations of arachidonic, eicosapentaenoic, and docosahexaenic acids (p < 0.05). The interventions of 18F and 25F ground‐beef decreased very low‐density lipoprotein C concentrations and increased particle diameters and low‐density lipoprotein (LDL)‐I‐C and LDL‐II‐C concentrations (p < 0.05). The ground‐beef 25F decreased PBMC mRNA levels for the adenosine triphosphate (ATP) binding cassette A, ATP binding cassette G1, sterol regulatory element binding protein‐1, and LDL receptor (LDLR) (p < 0.05). The ground‐beef 18F increased mRNA levels for stearoyl‐CoA desaturase‐1 (p < 0.05). We conclude that the increased LDL particle size and LDL‐I‐C and LDL‐II‐C concentrations following the 25F ground‐beef intervention may have been caused by decreased hepatic LDLR gene expression.  相似文献   

9.
Low density lipoprotein (LDL) plasma concentration is increased in the elderly. In this group, the incidence of coronary artery disease (CAD) is greater and LDL remains an important risk factor for CAD development. In this study, the plasma kinetics of a cholesterol-rich emulsion that binds to LDL receptors was studied in 10-subject groups of the elderly (70±4 yr), middle-aged (42±5 yr) and young (23±2 yr). All were normolipidemic, nonobese, nondiabetic subjects who did not have CAD. The emulsion was labeled with 14C-cholesteryl oleate and injected intravenously into the subjects. Blood samples were drawn at regular intervals over 24 h to determine the plasma decay curve of the emulsion radioactive label and to estimate its plasma fractional clearance rate (FCR, in h−1). FCR of the emulsion label was smaller in elderly compared to young subjects (0.032±0.035 and 0.071±0.049 h−1, respectively; mean±SD, P<0.05). FCR of the middle-aged subjects (0.050±0.071 h−1) was intermediate between the values of the elderly and young subjects, although not statistically different from them. A negative correlation was found between the emulsion FCR and subjects’ age (r=−0.47, P=0.008). We conclude that aging is accompanied by progressively diminished clearance of the emulsion cholesterol esters and, by analogy, of the native LDL.  相似文献   

10.
Frémont L  Gozzelino MT  Linard A 《Lipids》2000,35(9):991-999
This experiment was designed to evaluate the effects of dietary red wine phenolic compounds (WP) and cholesterol on lipid oxidation and transport in rats. For 5 wk, weanling rats were fed polyunsaturated fat diets (n−6/n−3=6.4) supplemented or not supplemented with either 3 g/kg diet of cholesterol, 5 g/kg diet of WP, or both. The concentrations of triacylglycerols (TAG, P<0.01) and cholesterol (P<0.0002) were reduced in fasting plasma of rats fed cholesterol despite the cholesterol enrichment of very low density lipoprotein + low density lipoprotein (VLDL+LDL). The response was due to the much lower plasma concentration of high density lipoprotein (HDL) (−35%, P<0.0001). In contrast, TAG and cholesteryl ester (CE) accumulated in liver (+120 and +450%, respectively, P<0.0001). However, the cholesterol content of liver microsomes was not affected. Dietary cholesterol altered the distribution of fatty acids mainly by reducing the ratio of arachidonic acid to linoleic acid (P<0.0001) in plasma VLDL+LDL (−35%) and HDL (−42%) and in liver TAG (−42%), CE (−78%), and phospholipids (−28%). Dietary WP had little or no effect on these variables. On the other hand, dietary cholesterol lowered the α-tocopherol concentration in VLDL+LDL (−40%, P<0.003) and in microsomes (−60%, P<0.0001). In contrast, dietary WP increased the concentration in microsomes (+21%, P<0.0001), but had no effect on the concentration in VLDL+LDL. Cholesterol feeding decreased (P<0.006) whereas WP feeding increased (P<0.0001) the resistance of VLDL+LDL to copper-induced oxidation. The production of conjugated dienes after 25 h of oxidation ranged between 650 (WP without cholesterol) and 2,560 (cholesterol without WP) μmol/g VLDL+LDL protein. These findings show that dietary WP were absorbed at sufficient levels to contribute to the protection of polyunsaturated fatty acids in plasma and membranes. They could also reduce the consumption of α-tocopherol and endogenous antioxidants. The responses suggest that, in humans, these substances may be beneficial by reducing the deleterious effects of a dietary overload of cholesterol.  相似文献   

11.
Left ventricular (LV) remodeling after myocardial infarction constitutes the structural basis for ventricular dysfunction and heart failure. The characterization underlying the expression of lipoprotein receptors in cardiac dysfunction is scarcely explored. The aim of this study was to analyze the status of lipoprotein receptors on the infarcted and noninfarcted areas of LV and to verify whether nanoparticles that mimic the lipid structure of low‐density lipoprotein (LDL) and have the ability to bind to LDL receptors (LDE) are taken up more avidly by the noninfarcted LV. 13 male Wistar rats with left coronary artery ligation (myocardial infarction [MI]) and 12 animals with SHAM operation (SHAM) were used in this study. 6 weeks after the procedure, the quantification of low‐density lipoprotein receptor (LDLR), LDL receptor‐related protein 1 (LRP1), scavenger receptor‐class B type I (SR‐BI) lipoprotein receptors, and PCNA proliferation marker, and tissue uptake of radioactively labeled LDE were performed. Immunohistochemistry and Western blot analysis showed that LDLR, LRP1, SR‐BI, and PCNA, expression in infarcted area of MI was remarkably higher than SHAM and noninfarcted subendocardial (SEN) and interstitial (INT) areas. In addition, in SEN noninfarcted area of MI, the presence of LDLR was about threefold higher than in SHAM SEN and INT noninfarcted areas. The LDE uptake of noninfarcted LV of MI group was about 30% greater than that of SHAM group. In conclusion, these findings regarding the status of lipoprotein receptors after MI induction could help to establish mechanisms on myocardial repairing. In conclusion, infarcted rats with LV dysfunction showed increased expression of lipoprotein receptors mainly in the infarcted area.  相似文献   

12.
The molecular mechanism of vascular pathology mediated by circulating lipoprotein(a) [Lp(a)] remains unknown. We examined the role of two distinguishing features of Lp(a) viz non‐covalent complex formation with a low density lipoprotein (LDL) and heavy glycosylation as determinants of binding of this lipoprotein and its LDL complex to cell‐surface receptors. LDL isolated from the Lp(a):LDL complex, free LDL and oxidized LDL were equally efficient in forming a reconstituted complex with pure Lp(a). Complexed LDL in healthy individuals was equal in oxidation status to free LDL. The number of LDL molecules associated with each Lp(a) molecule (LDL index) in plasma samples increased steadily with Lp(a) size (correlation coefficient r = 0.834). Complex reconstituted from purified plasma Lp(a) and LDL maintained the same LDL index as plasma in accordance with Lp(a) size. Consequently, the percentage of complex‐free Lp(a) in the plasma decreased sharply with Lp(a) size (r = ?0.887). Although O‐glycosylation measured in terms of lectin binding increased with Lp(a) size, the LDL index increased significantly faster than O‐glycosylation among Lp(a) phenotypes of different plasma samples. Complexes with varying stoichiometry existed in the same plasma. Extra LDL complex molecules were not recognized by LDL receptors on human macrophages or rat cardiac fibroblasts indicating attachment to Lp(a) involved LDL receptor‐binding sites. However, unlike free LDL complex LDL could attach through Lp(a) to immobilized form of galectin‐1, a lectin ubiquitous on mammalian cells. Results suggest that phenotype‐dependence of the physiological and pathological functions of Lp(a) may operate through differential LDL‐carrier activity.  相似文献   

13.
Oxidatively modified low density lipoprotein (LDL) has many biological activities which could contribute to the pathology of the atherosclerotic lesion. Because atherosclerosis has an inflammatory component, there has been much interest in the extent to which LDL could be oxidatively modified in vivo by inflammation. The present study examined LDL present in an accessible inflammatory site, the inflamed synovial joint, for evidence of compositional change and oxidative modification. LDL was isolated from knee joint synovial fluid (SF) from subjects with inflammatory arthropathies and also from matched plasma samples. SF and plasma LDL had similar free cholesterol and α-tocopherol content, but SF LDL had a lower content of esterified cholesterol. On electrophoresis, SF LDL was slightly more electronegative than LDL from matched plasma samples, but the changes were much less than those resulting from Cu2+-treatment of LDL. Oxidized cholesterol was not detected in any samples, but cholesterol ester hydroperoxide levels were greater in SF than in plasma LDL. When samples from three subjects were incubated with macrophages, the SF LDL did not cause significant loading of the cells with cholesterol or cholesterol esters, in contrast to the situation with acetylated LDL. Overall, the SF LDL displayed evidence of slightly increased oxidation by comparison with matched plasma samples. Despite their isolation from an environment with active inflammation, changes were modest compared with those resulting from Cu2+ treatment. Thus, extensive LDL oxidation is not a necessary correlate of location in a chronic inflammatory site, even though it is characteristic of atherosclerotic lesions.  相似文献   

14.
The distinct effects of the estrogen and progestin components of hormonal therapy on the metabolism of apolipoprotein (apo) B‐containing lipoproteins have not been studied. We enrolled eight healthy postmenopausal women in a placebo‐controlled, randomized, double‐blind crossover study. Each subject received placebo, conjugated equine estrogen (CEE, 0.625 mg/day) and CEE plus medroxyprogesterone acetate (MPA, 2.5 mg/day) for 8 weeks in a randomized order, with a 4‐week washout between phases. Main outcomes were the fractional catabolic rate (FCR) and production rate (PR) of apo B100 in triglyceride‐rich lipoproteins (TRL), intermediate‐density lipoproteins (IDL) and low ‐density lipoprotein (LDL) and of apo B48 in TRL. Compared to placebo, CEE increased TRL apo B100 PR (p = 0.04). CEE also increased LDL apo B100 FCR (p = 0.02), but this effect was offset by a significant increase in LDL apo B100 PR (p = 0.04). Adding MPA to CEE negated the CEE effects resulting in no significant changes in TRL apo B100 PR and LDL apo B100 FCR and PR relative to placebo. Relative to placebo, during CEE there was a trend toward a reduction in plasma apo B48 concentrations and PR (p = 0.07 and p = 0.12, respectively). Compared with CEE, CEE + MPA significantly increased TRL apo B48 FCR (p = 0.02) as well as apo B48 PR (p = 0.01), resulting in no significant changes in apo B48 concentration. Estrogen and progestin have independent and opposing effects on the metabolism of the atherogenic apo B100‐ and apo B48‐containing lipoproteins.  相似文献   

15.
To test the effects of exchanging dietary complex and simple carbohydrate for fat calories on lipoprotein metabolism, guinea pigs were fed two different fat/carbohydrate ratios: 2.5∶58% (w/w) or 25∶29% (w/w) with either sucrose or starch as the carbohydrate source. Animals fed high-fat had higher plasma low-density lipoprotein (LDL) and hepatic cholesterol concentrations than animals fed low-fat diets (P<0.01). The cholesteryl ester content per particle was higher, and the number of triacylglycerol (TAG) molecules was lower in very low density lipoprotein (VLDL) and LDL from animals fed high-fat diets. Intake of high-fat/sucrose resulted in higher plasma LDL concentrations than intake of high-fat/starch, and animals fed low-fat/starch had the highest plasma TAG concentrations associated with VLDL particles containing more TAG molecules, as well as a TAG-enriched LDL. The activity of plasma lecithin cholesteryl:acyl transferase (LCAT) was highest in animals fed high-fat/sucrose, and heart lipoprotein lipase (LPL) activity was higher in animals fed high-fat diets. Hepatic apoprotein B/E (apo B/E) receptor number (Bmax) was increased 21% with low-fat diets (P<0.01). These results suggest that the hypercholesterolemia induced by high-fat and by sucrose intake are associated with a higher plasma LCAT activity which results in a cholesteryl ester-enriched VLDL which, by the action of LPL, might be more readily converted to LDL through the delipidation cascade leading to downregulation of hepatic apo B/E receptors. The hypertriglyceridemia associated with low-fat intake may result from increased production of VLDL TAG, which would explain the increased TAG content and the higher TAG/CE ratio of VLDL from animals fed the low-fat/starch diet.  相似文献   

16.
This study analyzes fatty acid (FA) composition in plasma lipids and erythrocyte phospholipids while comparing septic and non‐septic critically ill patients. The aim was to describe impacts of infection and the inflammatory process. Patients with severe sepsis (SP, n = 13); age‐, sex‐ and APACHE II score‐matched non‐septic critically ill with systemic inflammatory response syndrome (NSP, n = 13); and age‐/sex‐matched healthy controls (HC, n = 13) were included in a prospective case–control study during the first 24 h after admission to the intensive care unit. In both SP and NSP, lower n‐6 polyunsaturated FA (PUFA) accompanied by higher proportions of monounsaturated FA (MUFA) in plasma phospholipids (PPL) was observed relative to HC. MUFA proportion was negatively correlated with n‐6 PUFA, high density lipoprotein cholesterol (HDL‐C), and albumin. MUFA was positively correlated with C‐reactive protein (CRP), procalcitonin (PCT), interleukins (IL‐6, IL‐10), oxidized low density lipoproteins (ox‐LDL), and conjugated dienes (CD). In both SP and NSP, inflammatory and lipid peroxidation markers were significantly higher—CRP (p < 0.001; p = 0.08), IL‐6, IL‐10, TNF‐α (p < 0.01, p = 0.06), ox‐LDL, and CD while total cholesterol, HDL‐C, LDL‐C albumin, and 20:4n‐6/22:6n‐3 and n‐6/n‐3 ratios were lower compared to HC. In conclusion, the changes in plasma lipid FA profile relate to the intensity of inflammatory and peroxidative response regardless of insult etiology. The lower MUFA and higher n‐6 PUFA proportions in PPL were inversely correlated with cholesterol and albumin levels.  相似文献   

17.
Oxidized LDL lipids (ox‐LDL) are associated with lifestyle diseases such as cardiovascular diseases, metabolic syndrome and type 2 diabetes. The present study investigated how postpartum weight retention effects on ox‐LDL and serum lipids. The study is a nested comparative research of a cluster‐randomized controlled trial, NELLI (lifestyle and counselling during pregnancy). During early pregnancy (8–12 weeks) and 1 year postpartum, 141 women participated in measurements for determining of plasma lipids: total cholesterol (T‐C), LDL‐cholesterol (LDL‐C), HDL‐cholesterol (HDL‐C), triacylglycerols (TAG) and ox‐LDL. Subjects were stratified into tertiles (weight loss, unaltered weight and weight gain groups) based on their weight change from baseline to follow‐up. Ox‐LDL was determined by baseline level of conjugated dienes in LDL lipids. Among the group of weight gainers, concentration of TAG reduced less (?0.14 vs. ?0.33, p = 0.002), HDL‐C reduced more (?0.31 vs. ?0.16, p = 0.003) and ox‐LDL/HDL‐C ratio increased (3.0 vs. ?0.2, p = 0.003) when compared to group of weight loss. Both T‐C and LDL‐C elevated more (0.14 vs. ?0.21, p = 0.008; 0.31 vs. 0.07, p = 0.015) and TAG and ox‐LDL reduced less (?0.33 vs. 0.20, p = 0.033; ?3.33 vs. ?0.68, p = 0.026) in unaltered weight group compared to weight loss group. The women who gained weight developed higher TAG and ox‐LDL/HDL‐C ratio as compared to those who lost weight. Postpartum weight retention of 3.4 kg or more is associated with atherogenic lipid profile.  相似文献   

18.
The net transfer of labeled α-tocopherol from donor to acceptor lipoproteins at physiological concentrations was investigated. Labeled lipoproteins were isolated i) followingin vitro addition of [3,4-3H]all rac-α-tocopherol to plasma, or ii) from plasma obtained 12–16 h after ingestion by normal subjects of an oral dose (100 mg each) of 2R,4′R,8′R-α-[5,7-(C2H3)2]tocopheryl acetate and 2S,4′R′,R-α-[5-C2H3]tocopheryl acetate. A constant amount (on a protein basis) of labeled lipoprotein was incubated with an increasing amount of unlabeled acceptor lipoprotein for 2 h at 37°C. No discrimination between stereoisomers of α-tocopherol was detected. Labeled VLDL and labeled LDL (very low and low density lipoproteins, respectively) tended to retain their labeled tocopherol. Labeled high density lipoproteins (HDL) readily transferred the labeled tocopherol to VLDL (>60% transferred), while the transfer to LDL was dependent upon the ratio of labeled HDL/LDL with a lower net transfer at higher ratios. This dependency of the distribution of tocopherol upon the ratio of HDL/LDL was also observedin vivo. The tocopherol/mg HDL protein was measured in 11 subjects with varying HDL levels. As the %HDL in the plasma increased from 14 to 50%, the tocopherol/HDL protein also increased (r2=0.37,P<0.05).  相似文献   

19.
The effects of vitamin E on cholesteryl ester (CE) metabolism in 1774 cells were examined. Pretreatment of 1774 cells with vitamin E at concentrations above 50 μM significantly decreased acetylated low density lipoprotein (LDL)-induced incorporation of [14C]oleate into CF in cells in a dose-dependent manner. This was partly due to vitamin E Also significantly inhibiting the uptake of [3H]CE-labeled acetylated LDL by 1774 cells. A trend existed toward suppression of acyl-CoA:cholesterol acyltransferase (ACAT) activity in the cell lysate at high vitamin E concentration, but there was no effect on hydrolysis of CE. These data indicate that vitamin E reduces the uptake of modified LDL and suppresses ACAT activity, resulting in less cholesterol esterification in macrophages; a novel mechanism underlying the antiatherogenic properties of vitamin E.  相似文献   

20.
Cho KH  Lee JY  Choi MS  Bok SH  Park YB 《Lipids》2002,37(7):641-646
In a previous study, CETP inhibitory peptide (3 kDa) was isolated from hog plasma. The peptide, synthesized chemically according to the amino acid sequence of the 3-kDa peptide (designated P28), showed CETP inhibitory activity both in vitro and in vivo [Cho et al. (1998) Biochim. Biophys. Acta 1391, 133–144]. We report herein further unique features of P28 when it was associated with the cholesteryl ester (CE)-donor and-acceptor lipoproteins. Lipoprotein substrates with P28 present in both HDL (as a CE-donor) and LDL (as a CE-acceptor) served as poor substrates, with CE-transfer activity decreased up to 60% compared to normal substrates without P28. P28 was found to be located in HDL fractions of hog plasma and showed the same electromobility as that visualized by PAGE on 7% polyacrylamide gel under nondenaturing conditions. Addition of apolipoprotein A-1 (apoA-1) or apoB antibody to a normal CE-transfer mixture did not alter CE-transfer activity. However, addition of apoA-1 or −B antibody to a CETP-inhibition mixture decreased the inhibitory activity of P28 by ca. 20%. Western blot analysis revealed that P28 was associated only with human and hog HDL among several lipoproteins purified from human, hog, and rabbit. CFTP-inhibition assays with various lipoprotein substrates revealed that P28 exhibited substrate-specific inhibitory activity. The inhibitory activity of P28 was highly dependent on the type of lipoprotein substrate (whether CE-donor or-acceptor); P28 inhibited CE transfer from HDL to LDL, but it did not inhibit CE transfer from HDL to HDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号