首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
基于流体动力学能量输运模型 ,对沟道杂质浓度不同的槽栅和平面 PMOSFET中施主型界面态引起的器件特性的退化进行了研究 ,并与受主型界面态的影响进行了对比 .研究结果表明同样浓度的界面态在槽栅器件中引起的器件特性的漂移远大于平面器件 ,且 N型施主界面态密度对器件特性的影响远大于 P型界面态 ,N型施主界面态引起器件特性的退化趋势与 P型受主界面态相似 ,而 P型施主界面态则与 N型受主界面态相似 .沟道杂质浓度不同 ,界面态引起的器件特性的退化则不同  相似文献   

2.
基于流体动力学能量输运模型,对沟道杂质浓度不同的槽栅和平面PMOSFET中施主型界面态引起的器件特性的退化进行了研究,并与受主型界面态的影响进行了对比.研究结果表明同样浓度的界面态在槽栅器件中引起的器件特性的漂移远大于平面器件,且N型施主界面态密度对器件特性的影响远大于P型界面态,N型施主界面态引起器件特性的退化趋势与P型受主界面态相似,而P型施主界面态则与N型受主界面态相似.沟道杂质浓度不同,界面态引起的器件特性的退化则不同.  相似文献   

3.
任红霞  郝跃 《半导体学报》2001,22(5):629-635
基于流体动力学能量输运模型 ,对沟道杂质浓度不同的深亚微米槽栅和平面 PMOSFET中施主型界面态引起的器件特性的退化进行了研究 .研究结果表明同样浓度的界面态密度在槽栅器件中引起的器件特性的漂移远大于平面器件 ,且电子施主界面态密度对器件特性的影响远大于空穴界面态 .特别是沟道杂质浓度不同 ,界面态引起的器件特性的退化不同 .沟道掺杂浓度提高 ,同样的界面态密度造成的漏极特性漂移增大 .  相似文献   

4.
基于流体动力学能量输运模型,对沟道杂质浓度不同的深亚微米槽栅和平面PMOSFET中施主型界面态引起的器件特性的退化进行了研究.研究结果表明同样浓度的界面态密度在槽栅器件中引起的器件特性的漂移远大于平面器件,且电子施主界面态密度对器件特性的影响远大于空穴界面态.特别是沟道杂质浓度不同,界面态引起的器件特性的退化不同.沟道掺杂浓度提高,同样的界面态密度造成的漏极特性漂移增大.  相似文献   

5.
讨论了最差应力模式下(Vg=Vd/2)宽沟和窄沟器件的退化特性.随着器件沟道宽度降低可以观察到宽度增强的器件退化.不同沟道宽度pMOSFETs的主要退化机制是界面态产生.沟道增强的器件退化是由于沟道宽度增强的碰撞电离率.通过分析电流拥挤效应,阈值电压随沟道宽度的变化,速度饱和区特征长度的变化和HALO结构串联阻抗这些可能原因,得出沟道宽度增强的热载流子退化是由宽度降低导致器件阈值电压和串联阻抗降低的共同作用引起的.  相似文献   

6.
胡靖  赵要  许铭真  谭长华 《半导体学报》2003,24(12):1255-1260
讨论了最差应力模式下(Vg=Vd/2)宽沟和窄沟器件的退化特性.随着器件沟道宽度降低可以观察到宽度增强的器件退化.不同沟道宽度p MOSFETs的主要退化机制是界面态产生.沟道增强的器件退化是由于沟道宽度增强的碰撞电离率.通过分析电流拥挤效应,阈值电压随沟道宽度的变化,速度饱和区特征长度的变化和HAL O结构串联阻抗这些可能原因,得出沟道宽度增强的热载流子退化是由宽度降低导致器件阈值电压和串联阻抗降低的共同作用引起的.  相似文献   

7.
MOS器件辐照引入的界面态陷阱性质   总被引:1,自引:0,他引:1  
通过分析总剂量辐照产生的界面陷阱的施主和受主性质 ,用半导体器件模拟软件 Medici模拟了NMOS、PMOS器件加电下辐照后的特性。结果表明 ,对于 NMOSFET,费米能级临近导带 (N沟晶体管反型 )时 ,受主型界面态为负电荷 ,施主型界面态陷阱为中性 ,使界面态陷阱将引起的阈值电压漂移 ;而对 PMOSFET,当费米能级临近价带 (P沟晶体管反型 )时 ,施主型界面态陷阱带正电荷 ,受主型界面态陷阱为中性 ,界面态陷阱将引起负的阈值电压漂移。理论模拟的转移特性与测试结果吻合。文中从器件工艺参数出发 ,初步建立了总剂量电离辐照模型 ,该模型对于评估器件总剂量加固水平提供了一种理论方法  相似文献   

8.
研究不同沟道长度n 沟道MOS场效应晶体管的热载流子效应对其退化特性的影响.实验结果表明,随着器件沟道长度的减小,其跨导退化明显加快,特别是当沟道长度小于1mm时更是如此.这些结果可以用热载流子注入后界面态密度增加来解释.  相似文献   

9.
杨林安  于春利  郝跃 《半导体学报》2005,26(7):1390-1395
通过对采用0.18μm CMOS工艺制造的两组不同沟道长度和栅氧厚度的LDD器件电应力退化实验发现,短沟薄栅氧LDD nMOSFET(Lg=0.18μm,Tox=3.2nm)在沟道热载流子(CHC)应力下的器件寿命比在漏雪崩热载流子(DAHC)应力下的器件寿命要短,这与通常认为的DAHC应力(最大衬底电流应力)下器件退化最严重的理论不一致.因此,这种热载流子应力导致的器件退化机理不能用幸运电子模型(LEM)的框架理论来解释.认为这种“非幸运电子模型效应”是由于最大碰撞电离区附近具有高能量的沟道热电子,在Si-SiO2界面产生界面陷阱(界面态)的区域,由Si-SiO2界面的栅和漏的重叠区移至沟道与LDD区的交界处以及更趋于沟道界面的运动引起的.  相似文献   

10.
基于流体动力学能量输运模型 ,利用二维仿真软件 Medici研究了深亚微米槽栅 PMOS器件衬底和沟道掺杂浓度对器件抗热载流子特性的影响 ,并从器件内部物理机理上对研究结果进行了解释。研究发现 ,随着沟道杂质浓度的提高 ,器件的抗热载流子能力增强 ;而随着衬底掺杂浓度的提高 ,器件的抗热载流子性能降低。这主要是因为这些结构参数影响了电场在槽栅 MOS器件内的分布和拐角效应 ,从而影响了载流子的运动并使器件的热载流子效应发生变化  相似文献   

11.
The degradation of electrical performance induced by interface states is one main reason for failure occurs in deep-sub-micron MOS devices. Especially for grooved-gate MOS devices, there are a large amount of interface states and flaw formed during the etching of concave. Based on the hydrodynamics energy transport model, using MEDICI simulator, the degradation induced by donor interface states is analyzed for deep-sub-micron grooved-gate PMOSFET’s with different channel doping densities and compared with that of corresponding conventional planar PMOSFET’s. The results also compared with that of degradation induced by acceptor interface states. The simulation results indicate that the degradation induced by same interface state density in grooved-gate PMOSFET’s is larger than that in planar PMOSFET’s, and in both structure devices, the impact of electron donor interface states on device performance is far larger than that of hole donor interface state. This work gives an useful insight of mechanism of hot-carrier degradation for grooved gate MOS devices and lays a solid foundation for grooved gate devices used in deep-sub-micron region VLSI practically.  相似文献   

12.
基于流体动力学能量输运模型,利用二维器件模拟器MEDICI对深亚微米槽栅NMOSFET器件的结构参数,如结深、凹槽拐角及沟道长度等对器件性能的影响进行了仿真研究,并与相应的常规平面器件特性进行了对比.研究表明在深亚微米范围内,槽栅器件能够很好地抑制短沟道效应和热载流子效应,但电流驱动能力较平面器件小,且器件性能受凹槽拐角和沟道长度的影响较显著.  相似文献   

13.
凹槽深度与槽栅PMOSFET特性   总被引:4,自引:3,他引:1  
任红霞  郝跃 《半导体学报》2001,22(5):622-628
基于能量输运模型对由凹槽深度改变引起的负结深的变化对深亚微米槽栅 PMOSFET性能的影响进行了分析 ,对所得结果从器件内部物理机制上进行了讨论 ,最后与由漏源结深变化导致的负结深的改变对器件特性的影响进行了对比 .研究结果表明随着负结深 (凹槽深度 )的增大 ,槽栅器件的阈值电压升高 ,亚阈斜率退化 ,漏极驱动能力减弱 ,器件短沟道效应的抑制更为有效 ,抗热载流子性能的提高较大 ,且器件的漏极驱动能力的退化要比改变结深小 .因此 ,改变槽深加大负结深更有利于器件性能的提高 .  相似文献   

14.
基于能量输运模型对由凹槽深度改变引起的负结深的变化对深亚微米槽栅PMOSFET性能的影响进行了分析,对所得结果从器件内部物理机制上进行了讨论,最后与由漏源结深变化导致的负结深的改变对器件特性的影响进行了对比.研究结果表明随着负结深(凹槽深度)的增大,槽栅器件的阈值电压升高,亚阈斜率退化,漏极驱动能力减弱,器件短沟道效应的抑制更为有效,抗热载流子性能的提高较大,且器件的漏极驱动能力的退化要比改变结深小.因此,改变槽深加大负结深更有利于器件性能的提高.  相似文献   

15.
任红霞  郝跃  许冬岗 《电子学报》2001,29(2):160-163
基于流体动力学能量输运模型和幸运热载流子模型,用二维器件仿真软件Medici对深亚微米槽栅NMOSFET的结构参数,如沟道长度、槽栅凹槽拐角角度、漏源结深等,对器件抗热载流子特性的影响进行了模拟分析,并与常规平面器件的相应特性进行了比较.结果表明即使在深亚微米范围,槽栅器件也能很好地抑制热载流子效应,且其抗热载流子特性受凹槽拐角和沟道长度的影响较显著,同时对所得结果从内部物理机制上进行了分析解释.  相似文献   

16.
讨论了槽栅结构nMOSFET的掺杂浓度对器件特性的影响,并通过二维器件仿真程序PISCES—Ⅱ进行了计算模拟比较。结果表明,提高衬底掺杂浓度,能使源漏区与沟道之间的拐角效应增大,对热载流子效应抑制的作用明显;提高沟道掺杂浓度,能减小沟道电荷的调制效应,使阈值电压更好。调节沟道掺杂浓度比调节衬底掺杂浓度对器件的影响更大。  相似文献   

17.
Detailed investigation of n-channel enhancement 6H-SiC MOSFETs   总被引:1,自引:0,他引:1  
Basic MOSFET parameters like inversion layer mobility, threshold voltage, intrinsic mobility reduction factor and interface state density extracted from the subthreshold slope were examined in detail for 6H-SiC enhancement-mode n-channel MOSFETs. The inversion layer mobility and the threshold voltage were determined as a function of substrate doping concentration as well as device temperature. The interface state density was studied for different substrate doping concentrations. The inversion layer mobility was found to decrease strongly with increasing substrate doping. In contrast to earlier reports the inversion layer mobility decreases also with temperature. Furthermore, the threshold voltage depends more pronounced on substrate doping and temperature than theoretically expected. The interface state density extracted from the subthreshold slope increases significantly with substrate doping concentration. All these phenomena are consistently interpreted by the classical MOSFET behavior which is extended by acceptor like interface states. These states are located close to the conduction band and exhibit a density increasing drastically toward the band edge  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号