首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When lipid synthesis is limited in HepG2 cells, apoprotein B100 (apoB100) is not secreted but rapidly degraded by the ubiquitin-proteasome pathway. To investigate apoB100 biosynthesis and secretion further, the physical and functional states of apoB100 destined for either degradation or lipoprotein assembly were studied under conditions in which lipid synthesis, proteasomal activity, and microsomal triglyceride transfer protein (MTP) lipid-transfer activity were varied. Cells were pretreated with a proteasomal inhibitor (which remained with the cells throughout the experiment) and radiolabeled for 15 min. During the chase period, labeled apoB100 remained associated with the microsomes. Furthermore, by crosslinking sec61beta to apoB100, we showed that apoB100 remained close to the translocon at the same time apoB100-ubiquitin conjugates could be detected. When lipid synthesis and lipoprotein assembly/secretion were stimulated by adding oleic acid (OA) to the chase medium, apoB100 was deubiquitinated, and its interaction with sec61beta was disrupted, signifying completion of translocation concomitant with the formation of lipoprotein particles. MTP participates in apoB100 translocation and lipoprotein assembly. In the presence of OA, when MTP lipid-transfer activity was inhibited at the end of pulse labeling, apoB100 secretion was abolished. In contrast, when the labeled apoB100 was allowed to accumulate in the cell for 60 min before adding OA and the inhibitor, apoB100 lipidation and secretion were no longer impaired. Overall, the data imply that during most of its association with the endoplasmic reticulum, apoB100 is close to or within the translocon and is accessible to both the ubiquitin-proteasome and lipoprotein-assembly pathways. Furthermore, MTP lipid-transfer activity seems to be necessary only for early translocation and lipidation events.  相似文献   

2.
3.
In both humans and cats, EtOH administered in vivo and acutely decreases contractility of smooth muscle of lower esophageal sphincter (LES) and lower esophagus (LE), but not striated muscle of upper esophagus. To see if these effects are associated with perturbation of Ca++ homeostasis, esophageal muscle slices were incubated in vitro with EtOH and then 45Ca++. At steady-state Ca++ uptake, some slices were exposed to 1 microM carbachol (CCH). Although 100 mM EtOH had no effect on Ca++ uptake into resting or stimulated striated muscle of upper esophagus, it significantly inhibited Ca++ uptake into smooth muscle of LES and LE. For unstimulated LE and resting LES, 100 mM EtOH significantly inhibited both initial uptake and steady-state levels, whereas lower doses had no significant effect. EtOH at 100 mM also affected changes in Ca++ content induced by CCH stimulation. CCH increased total exchangeable tissue Ca++ content in LE, whereas it decreased Ca++ content in LES. EtOH at 100 mM blunted these CCH-induced effects in both LES and LE. In contrast to resting muscle, inhibition of CCH-stimulated LE muscle was not limited to 100 mM EtOH, because substantial and significant inhibition was also seen at EtOH doses of 25 and 50 mM, doses which are relevant even in social drinking. Thus, EtOH inhibition of Ca++ influx into esophageal muscle is selective for smooth muscle, can occur at pharmacologically relevant EtOH doses and could be the underlying mechanism for EtOH's inhibition of contractility of esophageal smooth muscle.  相似文献   

4.
In PC12, a cellular line derived from a rat pheochromocytoma, ethanol (EtOH) induces a different effect depending on the concentration used. When resting cells are incubated with an alcohol concentration less than or equal to 120 mM, the [Ca2+]i increased with a double phase pattern. If the alcohol concentration was increased over 120-160 mM, EtOH reversed its effect and the [Ca2+]i decreased. This decrease was strongly inhibited if KCl-depolarized cells were used and was completely abolished if the substrate constituted EtOH-chronically treated cells. The Ca2+ increase is the consequence of an activation of L-type voltage-activated channels, while the other voltage-dependent channels (N-type), the receptor-operated channels and the Ca2+ extrusion pump present in these cells are not involved in EtOH action. These findings indicate that EtOH can induce (by different mechanisms) both potentiating and inhibiting effects on [Ca2+]i in PC12 cells in relation to the alcohol dose effectively present in the suspension medium.  相似文献   

5.
6.
The ability of ethanol to interfere with insulin-like growth factor 1 (IGF-1)-mediated cell survival was examined in primary cultured cerebellar granule neurons. Cells underwent apoptosis when switched from medium containing 25 mM K+ to one containing 5 mM K+. IGF-1 protected granule neurons from apoptosis in medium containing 5 mM K+. Ethanol inhibited IGF-1-mediated neuronal survival but did not inhibit IGF-1 receptor binding or the neurotrophic action of elevated K+, and failed to potentiate cell death in the presence of 5 mM K+. Inhibition of neuronal survival by ethanol was not reversed by increasing the concentration of IGF-1. Significant inhibition by ethanol (15-20%) was observed at 1 mM and was half-maximal at 45 mM. The inhibition of IGF-1 protection by ethanol corresponded to a marked reduction in the phosphorylation of insulin receptor substrate 1, the binding of phosphatidylinositol 3-kinase (PI 3-kinase), and a block of IGF-1-stimulated PI 3-kinase activity. The neurotrophic response of IGF-1 was also inhibited by the PI 3-kinase inhibitor LY294002, the protein kinase C inhibitor chelerythrine chloride, and the protein kinase A inhibitor KT5720, but unaffected by the mitogen-activated protein kinase kinase inhibitor PD 98059. These data demonstrate that ethanol promotes cell death in cerebellar granule neurons by inhibiting the antiapoptotic action of IGF-1.  相似文献   

7.
When HeLa S-3 cells are incubated with medium made hypertonic by adding NaCl, protein synthesis is inhibited. When the cells are returned to normal conditions protein synthesis is restored. To study the molecular mechanism of this regulation of protein synthesis, lysates were prepared from HeLa S-3 cells grown in minimum essential medium (normal, N); from cells which were incubated with additional (100 mM) NaCl (hypertonic, H); and from cells which were treated similarly in hypertonic medium and then restored to isotonic conditions (hypertonic-isotonic, H-I). Lysates of H cells exhibited reduced endogenous protein synthesis. Studies with mixed lysates from H and N cells implicated that the H lysate did not contain a soluble, non-labile macromolecule (greater than 10 000 daltons) with an inhibitory activity upon the protein synthesis. Analysis by Edman reaction of H lysates showed a reduced incorporation of [35S]methionine into N-terminal suggesting that the initiation step of protein synthesis was affected. However, sucrose gradietn analysis indicated that lysates of H cells were still able to form 80-S initiation complexes with [35S] methionyl-tRNAIMet. The block in initiation was not complete. The lesion could not be reversed by adding post-ribosomal supernatant or a ribosomal salt wash from N cells to ribosomes from the H cells. The data show that the ribosomal fraction is primarily involved in the inhibition.  相似文献   

8.
The effect of ethanol on mucus glycoprotein synthesis, intracellular modification, transport, glycosylation, and secretion was studied in rat gastric mucous cells. Preincubation of the in vitro translation mixture containing gastric mucous cells mRNA for 60 min with 0 to 120 mM ethanol caused a decrease in the synthesis of mucus glycoprotein apopeptide by up to 40%. The reduction in translation was time- and ethanol concentration-dependent. After 60 min, translation in the presence of 30, 60, and 120 mM ethanol decreased to 83.3 +/- 2.3%, 75.5 +/- 0.4%, and 63.6 +/- 2.6%, respectively. The experiments conducted with endoplasmic reticulum microsomes, preincubated with ethanol, and used in the studies of cotranslational translocation of the apomucin showed a 20% decrease in the transfer of mucus glycoprotein apopeptide to the lumen of endoplasmic reticulum microsomes. In the presence of ethanol, processing of mucus glycoprotein apopeptide in Golgi was also inhibited. During the initial 30 min of incubation with 0 to 120 mM ethanol, glycosylation seemed to proceed at the same rate in the samples with and without ethanol. However, during consecutive 30 min of incubation, glycosylation in the presence of 60 mM ethanol decreased by 30 to 35%, and with 120 mM ethanol was completely inhibited. Measurements of the effect of ethanol on the discharge of mucus glycoprotein from the intracellular stores revealed that, on average, the secretory output of the rat gastric mucosa exposed to ethanol liquid diet for 8 weeks decreased by 77% or more, and adherence of the glycoprotein to the gastric epithelium was weakened. Results indicate that ethanol inhibits synthesis, transport, and processing of gastric mucus glycoprotein, and that the processes taking place in different intracellular compartments contribute in the additive fashion and, are reflected in a dramatic decrease in the delivery of mucus glycoprotein to the gastric epithelial surfaces.  相似文献   

9.
The addition of aniline to isolated hepatocytes derived from fasted rats and incubated with ethanol, caused a 30-60% decrease in the rate of ethanol oxidation. The degree of inhibition was dependent on aniline concentration, 5 mM causing near-maximal inhibition. Aniline reduced the activity of alcohol dehydrogenase in a noncompetitive manner, but had no effect on aldehyde dehydrogenase activity nor on reducing-equivalent transfer between the cytoplasm and mitochondria. The inhibition of alcohol dehydrogenase by aniline was associated with a decrease in the inhibitory effects of ethanol on glycolysis. Aniline, added to hepatocytes in the presence or absence of ethanol, inhibited gluconeogenesis from lactate and pyruvate, but not from sorbitol or fructose.  相似文献   

10.
In an earlier study, we demonstrated that chronic ethanol (EtOH) exposure down-regulated the cannabinoid receptors (CB1) in mouse brain synaptic plasma membrane. In the present study, we investigated the effect of chronic EtOH on the formation of anandamide (AnNH), an endogenous cannabimimetic compound, and its precursor N-arachidonoylphosphatidylethanolamine (N-ArPE) in SK-N-SH cells that were prelabeled with [3H]arachidonic acid. The results indicate that exposure of SK-N-SH cells to EtOH (100 mM) for 72 h significantly increased levels of [3H]AnNH and [3H]N-ArPE (p < 0.05) (1.43-fold for [3H]AnNH and 1.65-fold for [3H]N-ArPE). Exposure of SK-N-SH cells to EtOH (100 mM, 24 h) inhibited initially the formation of [3H]AnNH at 24 h, followed by a progressive increase, reaching a statistical significance level at 72 h (p < 0.05). [3H]N-ArPE increased gradually to a statistically significant level after 48 and 72 h (p < 0.05). Incubation with exogenous ethanolamine (7 mM) and EtOH (100 mM, 72 h) did not result in an additive increase in the formation of [3H]AnNH. The formation of [3H]AnNH and [3H]N-ArPE by EtOH was enhanced by the Ca2+ ionophore A23187 or by the depolarizing agent veratridine and the K+ channel blocker 4-aminopyridine. Further, the EtOH-induced formation of [3H]AnNH and [3H]N-ArPE was inhibited by exogenous AnNH, whereas only [3H]AnNH formation was inhibited by the CB1 receptor antagonist SR141716A and pertussis toxin, suggesting that the CB1 receptor and G(i/o) protein mediated the regulation of AnNH levels. The observed increase in the levels of these lipids in SK-N-SH cells may be a mechanism for neuronal adaptation and may serve as a compensatory mechanism to counteract the continuous presence of EtOH. The present observation taken together with our previous results indicate the involvement of the endocannabinoid system in mediating some of the pharmacological actions of EtOH and may constitute part of a common brain pathway mediating reinforcement of drugs of abuse including EtOH.  相似文献   

11.
A template DNA from phage lambdah80dlacp5 coding for the in vitro synthesis of beta-galactosidase was used to study the effect of DNA methylation by the alkylating agent, dimethyl sulfate (DMS). Increasing the levels of DMS up to 50 mM concentration in the incubation medium led to an increase of DNA methylation. When incubated for 10 min at 37 degrees C, 3-4% Of nucleotides were methylated. The increase was linear to about 0.6% nucleotide methylation level. A higher yield was obtained at 37 degrees C incubation temperature than at 20 degrees C. Methylation of lambdah80dlacp5 DNA alone without methylation of other factors in the incubation mixture caused inhibition of the synthesis of beta-galactosidase in vitro. Increasing levels of DNA methylation caused greater inhibition of the newly synthesized enzyme activity. Total protein and RNA synthesis was inhibited by the methylated DNA to a much lesser extent than the inhibition of enzyme activity. When the level of nucleotide methylation was 0.74%, only 2% of enzyme activity remained, but total protein and RNA synthetic activities were found to be 72% and 44%, respectively.  相似文献   

12.
Glucose transport was studied in primary hippocampal neuron cultures exposed to ethanol. Immunofluorescent staining with antibodies against neuron-specific enolase and glial fibrillary acidic protein identified approximately 95% of the cultured cells as neurons. Western blot analysis was conducted with polyclonal antisera to glucose transporter isoforms GLUT1 and GLUT3. As previously seen in astrocytes, GLUT1 protein was regulated by the culture medium glucose content. Exposure to 50 and 100 mM of ethanol for 5 hr induced dose-dependent reductions in GLUT1 and GLUT3 protein. In contrast, GLUT1 mRNA abundance was increased relative to controls under the same conditions. Glucose uptake, measured with the nonmetabolized analog, 2-deoxy-D-glucose, was reduced by 50 and 100 mM of ethanol in four experiments. These results indicate a direct effect of ethanol on neuronal glucose transporter expression, which may play a role in the neurotoxic effects of alcohol.  相似文献   

13.
OBJECTIVE: The purpose of these studies was to determine the effects of the essential fatty acid, linoleic acid, and the commonly used non-steroidal anti-inflammatory agents, aspirin and acetaminophen, on the rate of prostaglandin (PG) biosynthesis by human amnion cells. METHODS: Amnion cells were isolated from term, normal pregnancies and grown to confluence. Cells were incubated with control or medium containing 100 mumol/L linoleic acid. Cells were also incubated with control medium or medium containing 10 or 100 micrograms/mL aspirin or acetaminophen. RESULTS: Following an initial delay, amnion cells exposed to linoleic acid exhibited a significant increase in PGE synthesis. Both aspirin and acetaminophen in clinically relevant concentrations had a significant inhibitory effect on amnion cell PGE synthesis. CONCLUSIONS: Linoleic acid has a stimulatory effect and aspirin and acetaminophen have an inhibitory effect on PGE synthesis in human amnion cells in culture. We speculate that dietary habits, supplement ingestion, and over-the-counter drug use may affect amnion cell PG production. In view of the potential importance of intrauterine PG production in normal and abnormal labor, further study in this area is indicated.  相似文献   

14.
Hepatocytes incubated at a pO2 of 0 mm Hg (N2/CO2, 95%/5%) loose their intracellular ATP content and their ability to synthesize RNA and proteins. Protein synthesis is virtually inhibited from the beginning of the incubation, while ATP content is gradually lost, thus suggesting a primary response of the cell to the absence of O2 rather than to ATP depletion. Such an early decrease of protein synthesis (as estimated as the incorporation of [14C]Leu into cell proteins) is unlikely the result of inhibition of amino acids uptake, enhanced protein degradation, or decreased RNA synthesis. Reoxygenation of such previously hypoxic cells with O2/CO2 at 95%/5% (pO2 of 700 mm Hg), leads to the recovery of both ATP and protein synthesis, even better the hypoxic period is not longer than 30 min. In hepatocytes incubated for 30 min under a pO2 of 700, 80, or 50 mm Hg, cell survival and ADP content are almost identical. Incorporation of radiolabelled leucine is linear in cells incubated under 700 mm Hg O2, but it rather stops at a pO2 of 80 or 50 mm Hg. The time course of both ATP and GTP content behaves in a similar way: it is fairly constant at a pO2 of 700 mm Hg, but a depletion is initiated after 20 min of incubation at a pO2 of 50 or 80 mm Hg. Finally, incubation of hepatocytes either at 700 or 0 mm Hg O2, in the presence of fructose (10 mM), shows that ATP content is maintained at the same level whatever the pO2 level. AMP content is increased only in cells incubated at 0 mm Hg O2 in the absence of fructose. Incorporation of radiolabelled leucine is stopped in such hypoxic cells incubated or not in the presence of fructose. From these results it appears that the presence or the absence of O2 might represent a turn on/off signal to which hepatocytes respond immediately by important metabolic changes like the inhibition of protein synthesis.  相似文献   

15.
During growth on low-K+ medium (1 mM K+), Methanobacterium thermoautotrophicum accumulated K+ up to concentration gradients ([K+]intracellular/[K+]extracellular) of 25,000- to 50,000-fold. At these gradients ([K+]extracellular of < 20 microM), growth ceased but could be reinitiated by the addition of K+ or Rb+. During K+ starvation, the levels of a protein with an apparent molecular weight of 31,000 increased about sixfold. The protein was associated with the membrane and could be extracted by detergents. Cell suspensions of M. thermoautotrophicum obtained after K+-limited growth catalyzed the transport of both K+ and Rb+ with apparent Km and Vmax values of 0.13 mM and 140 nmol/min/mg, respectively, for K+ and 3.4 mM and 140 nmol/min/mg, respectively, for Rb+. Rb+ competitively inhibited K+ uptake with an inhibitor constant of about 10 mM. Membranes of K+-starved cells did not exhibit K+-stimulated ATPase activity. Immunoblotting with antisera against Escherichia coli Kdp-ATPase did not reveal any specific cross-reactivity against membrane proteins of K+-starved cells. Cells of M. thermoautotrophicum grown at a high potassium concentration (50 mM) catalyzed K+ and Rb+ transport at similar apparent Km values (0.13 mM for K+ and 3.3 mM for Rb+) but at significantly lower apparent Vmax values (about 60 nmol/min/mg for both K+ and Rb+) compared with K+-starved cells. From these data, it is concluded that the archaeon M. thermoautotrophicum contains a low-affinity K+ uptake system which is overproduced during growth on low-K+ medium.  相似文献   

16.
Synaptic plasma membranes (SPM) isolated from rat cerebral cortex contain lipid kinases for conversion of phosphatidylinositol (PI), phosphatidylinositol 4-phosphate (PIP), and diacylglycerol (DG) to PIP, phosphatidylinositol 4,5-bisphosphate (PIP2), and phosphatidic acid (PA), respectively. These anionic phospholipids are important in signal transduction mechanisms and are required for synaptic function. The effect of ethanol and other aliphatic alcohols on phosphorylation of these lipids in SPM has not been established. Incubation of SPM with [gamma-32P]ATP resulted in labeling of PIP, lyso-PIP, PIP2, and PA. Ethanol (50-200 mM) added to the incubation system showed a dose-dependent decrease in labeling of PIP2, but not PIP or PA. To a lesser extent, labeling of PIP2 was also inhibited by 1-propanol, but neither isopropanol nor 1-butanol could alter the PIP2 labeling pattern. Under similar incubation conditions, labeling of PIP and PA in SPM was not altered by ethanol, 1-propanol, iso-propanol, but 1-butanol stimulated PIP labeling with a peak at 25 mM. Addition of exogenous PIP to the incubation mixture led to an increase in labeling of PIP2, suggesting that the endogenous PIP pool in SPM is limiting for the synthesis of PIP2 in SPM. Interestingly, when SPM were incubated with exogenous PIP, addition of ethanol (50-100 mM) to this incubation mixture resulted in an increase in PIP2 labeling. Taken together, these results suggest a specific effect of ethanol on PIP kinase in SPM, and this effect seems to be dependent on the location and/or amount of PIP in the membrane.  相似文献   

17.
The aim of the current study was to identify the subcellular compartment(s) responsible for the hydrolysis of chylomicron remnant-retinyl esters, in J774.1 cells. The cells were incubated with medium containing chylomicron remnant [(3)H]retinyl ester. Subcellular fractionation was used to separate early endosomes from late endosomes and lysosomes. About 26% and 80% of the total [(3)H]retinyl esters taken up by the J774 cells were hydrolyzed after 10 min and 60 min of chase, respectively. In the early endosomes, there was a 4-fold increase of radioactivity (nearly all radioactivity associated with retinyl esters) during the first 10 min of chase. The radioactivity in early endosomes was reduced by 43% from 10 min to 60 min and remained stable from 60 to 180 min of chase. From 10 to 60 min the amount of retinol in early endosomes increased from 44% to 82%, indicating an efficient hydrolysis of retinyl esters. Less than 10% and 5% of the total cell-associated radioactivity was found in the late endosomes and lysosomes during the entire chase period. In the chase medium, 84% of the total amount of retinoid released during 180 min was present already after 10 min. The percentage of retinol in the medium increased from 25% to 82% during incubation from 10 to 180 min. These data suggest that retinyl esters are endocytosed together with the chylomicron remnant particle and hydrolyzed in the early endosomes in this cell model.-Hagen, E., A. M. Myhre, T. E. Tjelle, T. Berg, and K. R. Norum. Retinyl esters are hydrolyzed in early endosomes of J774 macrophages.  相似文献   

18.
Acetylcholine and other muscarinic agonists stimulate the proliferation of rat cortical astrocytes and 132 1N1 human astrocytoma cells by activating muscarinic m3 cholinergic receptors. Ethanol was a potent inhibitor of carbachol-stimulated proliferation, measured by [3H]thymidine incorporation, with an IC50 of 10 mM. On the other hand, basal and serum-stimulated proliferation of astrocytes and astrocytoma cells was inhibited by ethanol with lower potency (IC50 = 200-250 mM). Concentration-response experiments with carbachol, in the presence of 10 mM ethanol, suggested that inhibition of proliferation by the alcohol was of the noncompetitive type. Experiments with acetaldehyde and with the alcohol dehydrogenase inhibitor 4-methylpyrazole suggested that the inhibitory effect of alcohol was due to ethanol itself and not to its metabolite acetaldehyde. Proliferation of astrocytoma cells induced by carbachol and the inhibitory effects of ethanol were also confirmed by flow cytometry using the 5-bromodeoxyuridine-Hoechst 33258 method. Ethanol (10 mM) had no effect on proliferation induced by 50 micrograms/ml insulin and 100 ng/ml platelet-derived growth factor BB; on the other hand, the mitogenic effect of 1 mM histamine, 100 U/ml interleukin-1, and 100 ng/ml 12-O-tetradecanoylphorbol 13-acetate were inhibited by approximately 50%. These results indicate that proliferation of glial cells induced by muscarinic agonists is especially sensitive to the inhibitory effect of ethanol. This action of ethanol may be relevant to its developmental neurotoxicity, particularly microencephaly, which is one of the common features of the fetal alcohol syndrome.  相似文献   

19.
In this study, intact porcine lenses were cultured in vitro for 7 days supplemented with commercial balanced salt solution (BSS) which is usually used as an irrigation solution during intraocular surgery, and the lenses were maintained under various culture conditions, e.g. temperature and CO2 concentration. The intact porcine lenses after 7 days culture were analyzed with optical density scanner, gel permeation chromatography on TSK HM-55 column and SDS-PAGE (polyacrylamide gel electrophoresis). It was found that lenses exhibited the least opacity when lenses were cultured with Ca(+2)-free BSS buffer, CO2-free incubator and maintained at a temperature of 25 degrees C. After the lenses were cultured with Ca(+2)-free BSS or BSS medium, the composition of crystallins in lenses was separated with TSK HM-55 column. It was indicated that the percentage of high molecular weight (HMW) protein and (alpha-crystallin increased, and gamma-crystallin decreased in lenses incubated with BSS medium compared with lenses incubated with Ca(+2)-free BSS medium. Following an increase in the concentration of calcium in the medium from 4.3 mM, 20 mM, 50 mM, 100 mM to 200 mM, the opacity of the lens was measured with a densitometer. The changed percentage of various crystallins was similar to lenses with BSS media that increased in HMW protein and alpha-crystallin, decreasing in gamma-crystallin. In the case of lens protein pattern, the crystallin washed from TSK HM-55 gel was separated with SDS-PAGE (polyacrylamide gel electrophoresis). It was indicated that some of proteins disappeared when lenses were incubated with various concentrations of calcium. The vanished pH proteins were 20.5 kDa at 50 mM calcium, 20.5 kDa and 21 kDa at 100 mM, 20.5 kDa, 21 kDa, 22 kDa and 23 kDa at 200 mM which were compared with the protein bands in the presence of 20 mM calcium in BSS medium. This study indicates that the commercial balanced salt solution (BSS) which is usually used as an irrigating solution during intraocular operations may increase the risk for lens opacity because of the calcium contained in the solution.  相似文献   

20.
Rat embryo fibroblasts grown in Eagle's minimal essential medium with 10% serum were labeled with L-[14C]leucine. After a 24 h cold chase, rates of proteolysis were evaluated by measuring the appearance of trichloroacetic acid-soluble 14C in the media. Cells remaining in minimal essential medium with 10% serum (basal) showed a proteolysis rate of 1% per h, whereas cells placed in minimal essential medium alone (serum-deficient) showed a stimulation of proteolysis to 3--4% per h. This enhanced proteolysis was transitory, occurring only for the first 4--8 h after cells were placed in the serum-deficient media. Vinblastine 10-5 M inhibited the enhanced proteolysis 40% but had no effect on basal proteolysis. Control experiments showed no detectable hydrolysis of extracellular proteins, nor did vinblastine affect the rate of protein synthesis. These data suggest that basal and enhanced proteolysis have at least partially distinct mechanisms in the cell and that only enhanced proteolysis involves microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号