共查询到19条相似文献,搜索用时 62 毫秒
1.
首先通过一种基于亮度聚类的肤色模型,检测人脸的初始位置;其次提出了一种基于粒子滤波的特征融合跟踪算法,用颜色直方图和方向梯度直方图来描述目标,在柱子滤波框架下将目标颜色和梯度信息有机结合,并自适应更新来跟踪人脸位置.实验表明,该算法不仅提高了跟踪精度,而且具有较强的鲁棒性. 相似文献
2.
为了实现粒子集的有效传播,克服粒子滤波跟踪时的退化问题,提出尺度和方向自适应的均值移动优化粒子滤波目标跟踪算法.用改进的均值移动作为一种优化机制对粒子进行传播,使粒子能够有效分散和聚类,有效解决退化问题.最后将该方法应用到真实图像序列中,实验表明算法在性能和效率上有明显提高. 相似文献
3.
本文针对人脸运动的非线性非高斯的特点,引入正则粒子滤波算法来进行运动预测估计,且根据预测精度对预测过程中目标运动速度和过程噪声方差进行自适应更新。实验结果表明,在人脸的旋转、肤色和部分遮挡影响下跟踪精度较高,抵抗光照环境变化,以及人脸大小变化等的鲁棒性较强。 相似文献
4.
5.
针对基于单一颜色特征的粒子滤波跟踪算法在复杂环境下会导致跟踪失败的问题,提出了一种融合颜色直方图和梯度方向直方图,形成一种新的综合直方图特征的粒子滤波跟踪算法.颜色直方图是对目标在彩色图像中的全局描述,而梯度方向直方图包含了一定的结构信息,两者可以互为补充.实验结果表明,采用综合直方图特征能够在背景颜色干扰导致目标颜色特征鉴别能力丧失的情况下,仍能稳定可靠地跟踪目标,提高了跟踪精度,具有较强的鲁棒性. 相似文献
6.
针对视频中运动人体的跟踪,提出了一种基于均值偏移粒子滤波的自适应跟踪算法。该算法首先对所要跟踪的人体目标进行分块,并选择与周围环境颜色相似度最小的块模板作为跟踪区域;然后使用基于均值偏移的粒子滤波方法进行跟踪,并设计了自适应更新块模板尺度的方法;最后在粒子滤波的状态估计阶段后,加入自适应观测模型,根据块模板尺度的变化情况,自适应地选择高斯噪声方差和粒子数目。实验证明,在出现遮挡或人体运动方向改变的情况下,本文算法的跟踪效果比传统均值偏移粒子滤波更好。 相似文献
7.
针对单一特征所带来的跟踪不稳定问题,该文提出一种基于纹理特征粒子滤波/Mean Shift的改进目标跟踪算法。该算法中建立一种选择反馈机制,首先对目标同时进行基于纹理信息的粒子滤波和基于颜色信息的Mean Shift两种算法的跟踪,然后对两种算法的跟踪结果进行比较,选择结果较好的输出,并把结果反馈到粒子滤波与Mean Shift中作为下一帧处理的初始值。实验结果表明,该方法克服了单一特征所带来的跟踪不稳定问题且具有较强的鲁棒性。 相似文献
8.
本文研究了目标的多特征融合跟踪问题.提出了衡量各特征质量的标量方法,利用粒子权值平方和来表示各特征信息的粒子退化程度,并以此值作为各特征信息质量状况的衡量.该方法能根据跟踪的实际情况判定各分信息粒子质量,并在此基础上提出了多模式融合策略,该策略能依据各分信息的质量变换各融合模式达到跟踪过程中各模式的最优组合.实验结果表明:在对复杂背景视频目标的跟踪中,该算法具有强的鲁棒性,较高的识别精度. 相似文献
9.
粒子滤波跟踪算法是对视频目标跟踪常用算法的改进。通过对采样粒子的均值漂移调整,使采样粒子集中于其邻近的局部极大值区域,加快了粒子收敛的速度;通过图像的积分直方图表达方式,对原算法中低效的直方图的统计工作,用粒子所在矩形区域的4个顶点的积分直方图的加减运算代替,运算速度得到较大程度的提高。对实际图像的跟踪和分析表明,本算法和传统的粒子滤波算法相比,具有更快的收敛速度,更短的计算时间,且粒子数越多,粒子所在区域面积越大,本算法的优势越明显。 相似文献
10.
提出了一种应用于视频序列的多特征粒子滤波(PF)跟踪算法,该方法在重采样后,对每一粒子应用CamShift算法,使所有粒子都趋于一个局部稳定的位置附近. 其中,权重中的似然函数根据颜色与边缘直方图分布的Bhattacharyya系数更新.该方法结合了CamShift计算量小的特点,使PF用较少的粒子能够对目标较准确的跟踪. 实验结果表明,该方法对遮挡具有一定的鲁棒性. 相似文献
11.
为了提高粒子滤波的性能,使用集合卡尔曼滤波对建议分布进行改进,同时提出了用于视频跟踪的自适应融合模型.使用集合卡尔曼滤波结合当前的观测信息构造建议分布,结合当前观测信息对每一个粒子进行集合分析,得到新的建议分布,依据新的建议分布对粒子进行采样,同时在跟踪过程中将颜色特征模型和形状特征模型进行融合,并进行自适应更新.实验结果证明:相对于传统粒子滤波和扩展卡尔曼粒子滤波,使用新的建议分布可以更有效地降低均方根误差,同时自适应融合模型的稳定性要高于使用单一颜色模型.使用新的建议分布和融合模型,可以有效提高粒子滤波的准确性和稳定性. 相似文献
12.
张苗辉 《上海电力学院学报》2010,(6)
针对传统粒子滤波的目标跟踪算法存在粒子退化问题,提出了基于无味粒子滤波(UPF)的目标跟踪算法。为了将当前观测信息融入,采用无味卡尔曼滤波(UKF)生成粒子滤波的提议分布,以改善滤波效果。针对目标在机动过程中引起的视觉形变以及背景的变化,又采用了颜色直方图作为目标的颜色分布模型,并与UPF相融合。仿真结果表明,该算法对动态场景下的高机动目标有较好的跟踪效果。 相似文献
13.
为解决用单一特征无法保持在复杂环境下跟踪的鲁棒性以及粒子数量增多导致的算法效率低下的问题,选择多个特征融合的策略来保证跟踪的持续稳定,并自适应地调整每个特征的权值来适应环境的变化;为提高算法的实时性,采用自适应的粒子数量。实验结果表明:本文算法有效地解决了目标旋转、目标遮挡以及背景混淆等诸多问题,具有较高的鲁棒性。 相似文献
14.
平均梯度反映图像中微小细节反差和纹理变化特征。本文针对光学成像系统聚焦范围有限,很难使得同一场景中所有物体都清晰显现这一特点,将平均梯度引入到多聚焦图像融合之中。首先将图像进行分块,然后计算每一块的平均梯度,根据平均梯度大小对相应块的像素进行处理,最后得到同一场景中所有物体都能清楚显现的融合图像。本文通过对多幅多聚焦图像进行融合和实验分析,以此来验证算法的有效性,对基于平均梯度的多聚焦图像融合算法性能进行了评价和分析,结果表明该算法是切实可行的,在多聚焦图像融合中可以取得较好的效果。 相似文献
15.
基于颜色特征的粒子滤波算法已成为移动物体跟踪的热点.提出一种基于加权颜色直方图的粒子滤波跟踪算法,利用Bhattacharyya距离来描述粒子与目标区域颜色模型的相似性.实验结果表明:该方法具有较好的实时性与鲁棒性,可应用在视频监控、小车寻迹等场合. 相似文献
16.
基于目标颜色特征,将遗传算法和粒子滤波器相结合进行非刚性目标的实时跟
踪:一般情况下,采用遗传算法跟踪目标,以最优个体作为目标状态;当发生较严重遮挡时,最优个体不一定是目标的真实状态,利用粒子滤波器的思想,以各个体的加权平均作为跟踪结果来克服遮挡影响.实验结果表明该混合算法具有较强的鲁棒性,能有效实现复杂场景下的目标跟踪. 相似文献
17.
基于目标颜色特征,将遗传算法和粒子滤波器相结合进行非刚性目标的实时跟踪:一般情况下,采用遗传算法跟踪目标,以最优个体作为目标状态;当发生较严重遮挡时,最优个体不一定是目标的真实状态,利用粒子滤波器的思想,以各个体的加权平均作为跟踪结果来克服遮挡影响。实验结果表明该混合算法具有较强的鲁棒性,能有效实现复杂场景下的目标跟踪。 相似文献
18.
和声搜索粒子滤波视觉跟踪 总被引:1,自引:0,他引:1
为了降低粒子滤波精度对精确重要性采样函数的依赖性,提高粒子滤波的视觉跟踪效果,将和声搜索引入到粒子滤波框架中,提出了一种基于和声搜索的粒子滤波视觉跟踪算法.通过记忆考虑、基因变异、随机变异等和声搜索算子结合当前观测信息,改善了粒子滤波视觉跟踪算法的重要性采样函数,增强了重要性采样函数对系统状态转移模型的鲁棒性.同时,对和声搜索参数进行了优化,平衡了视觉跟踪实时性和精确性的要求,并对粒子的权重进行了补偿,使其符合粒子滤波的理论基础贝叶斯估计.实验结果表明:优化的和声搜索参数,比常见参数更适合和声搜索粒子滤波;与基于粒子滤波、和声搜索、Mean-Shift改进的粒子滤波、分布场、多示例学习等视觉跟踪算法相比,和声搜索粒子滤波视觉跟踪算法能够在光线变化、遮挡等复杂场景下获得了更精确的视觉跟踪效果.和声搜索粒子滤波算法较好地结合当前观测与历史信息,获得鲁棒的视觉跟踪性能. 相似文献
19.
基于颜色纹理特征的均值漂移目标跟踪算法 总被引:3,自引:0,他引:3
针对经典均值漂移跟踪算法采用单一的颜色特征对目标进行跟踪检测存在的不足,提出一种将纹理特征与颜色特征相结合的改进均值漂移目标跟踪算法.该算法首次提出特征联合相似度的概念,通过均值漂移算法联合相似度的最大化计算,正确快速地获取新一帧图像跟踪目标的位置.实验结果表明,该算法具有更高的可靠性,同时满足一般目标跟踪任务的实时性要求. 相似文献