首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
罗辉  雷蓓  石孟可  张熙 《油田化学》2017,34(2):255-258
为获得具有良好耐温抗剪切性能的聚合物压裂液,设计并合成了含阳离子基团的丙烯酰胺共聚物PAAD及配套有机钛交联剂TC,以PAAD为稠化剂、TC为交联剂、多羟基化合物MH为交联促进剂,制备了阳离子聚合物压裂液。研究了PAAD、TC、MH、pH值对压裂液性能的影响。结果表明,PAAD具有较强的增黏能力,可作为压裂液稠化剂使用;TC可在酸性条件下与聚合物PAAD交联形成聚合物冻胶;MH在高温条件下能与PAAD稠化剂反应,促进聚合物交联网络的形成,提高压裂液黏度及耐温性能。该压裂液的性能与体系组成有关,随聚合物PAAD浓度的增加,压裂液冻胶黏度增大,但PAAD加量超过0.6%后冻胶黏度增幅减小。在PAAD浓度一定的条件下,TC和MH均存在对应冻胶高黏度的最佳浓度值。体系pH值对压裂液的性能影响较大,pH=3数4时压裂液成胶性能较好。组成为0.6%PAAD+1.0%TC+0.2%MH(pH=3数4)的压裂液经150℃、170 s~(-1)连续剪切90min后的黏度仍保持在90 m Pa·s左右,满足150℃高温油气井压裂施工需要。  相似文献   

2.
为提高聚乙烯醇压裂液耐温抗剪切性能,采用改性纤维素与聚乙烯醇的共混物作为稠化剂、有机钛为交联剂制备改性聚乙烯醇压裂液,研究了共混改性聚乙烯醇稠化剂的组成、压裂液中稠化剂与交联剂浓度、温度、pH值对压裂液性能的影响,对比了聚乙烯醇压裂液与改性聚乙烯醇压裂液的耐温抗剪切性能。结果表明:采用改性纤维素对聚乙烯醇稠化剂进行共混改性,可提高稠化剂的增黏能力和所配制的压裂液耐温抗剪切性能,稠化剂中改性纤维素含量以40%为宜;改性聚乙烯醇压裂液的组成和pH值对压裂液性能影响显著,适宜的改性聚乙烯醇压裂液配方为:稠化剂加量1.8%~2%、交联剂加量0.9%~1%、pH值7~9,该改性聚乙烯醇压裂液在120℃、剪切速率170 s~(-1)下连续剪切90 min后的黏度仍可保持在50 mPa·s以上,能满足油藏温度低于120℃油层的应用要求。  相似文献   

3.
以氧氯化锆、乳酸及木糖醇等原料制备了一种延缓交联的交联剂——有机锆交联剂ECA-1,将有机锆交联剂ECA-1加入到稠化剂ECA-180配制的稠化酸中得到一种高温延迟交联型交联酸,考察了交联剂反应条件、交联剂和稠化剂浓度对交联酸性能的影响,评价了交联酸的高温流变性能。实验发现,当物料配比为氧氯化锆∶乳酸∶木糖醇=1∶1.25∶0.020 8(质量比),反应温度为50~55℃,反应时间为4 h时交联酸具有较好的耐温抗剪切性能,调节交联剂和稠化剂加量可改变酸液的延缓交联时间。  相似文献   

4.
油田回注水微生物腐蚀贡献率的研究   总被引:1,自引:0,他引:1  
为了满足高温碳酸盐岩储层深度酸压的要求,优选了交联酸稠化剂和交联剂并与酸液添加剂形成了一种抗高温交联酸压裂液体系。稠化剂和交联剂的优劣直接决定了交联酸在高温下的综合性能,通过对稠化剂酸溶性、酸基液热稳定性及交联剂的交联时间、交联粘度、交联酸的抗温时间等指标的分析,确定了最佳稠化剂为DM3802,最佳交联剂为JL-10,并确定了用量。与酸液添加剂的配伍性实验也表明该体系配伍性良好。在120℃下对该交联酸压裂液的综合性能进行了评价,实验表明该体系具有良好的抗高温、抗剪切、携砂性能、低滤失、易破胶等特点。  相似文献   

5.
为了提高压裂液稠化剂的耐温耐盐性能,以丙烯酰胺(AM)、丙烯酸(AA)、阴离子单体2-丙烯酰胺-2-甲基 丙磺酸(AMPS)和阳离子单体丙烯酰氧乙基三甲基氯化铵(DAC)为单体,单体AM、AA、AMPS、DAC质量比 为9∶1∶3∶1.5,将单体以总质量分数为30%溶于水中(水相),将质量分数为10%的乳化剂(Span-80、Tween-80 质量 比为9∶1)溶于白油(油相),油水相比为1∶2.5,合成了具有耐温耐盐性的油包水乳液稠化剂PAAD,其黏均相对分 子质量为383×104。通过红外光谱和核磁共振氢谱表征了PAAD,测定了聚合物PAAD的耐温性、抗盐性、耐剪切 和破胶性能。研究结果表明,PAAD具有良好的耐温抗剪切性能,在90 ℃、剪切速率为170 s-1下,质量分数为 1.5%的PAAD聚合物溶液剪切1.5 h 后黏度保持在51.7 mPa·s。PAAD溶液在高剪切后进入低剪切区后可快速恢 复黏度,可保障悬砂不沉降。PAAD具有良好的抗盐性,在矿化度为50 g/L 的模拟高盐海水中,质量分数为1.5% 的PAAD聚合物溶液的黏度为45 mPa·s。在90 ℃下,破胶剂用量为0.2%时,质量分数为1.5%的PAAD聚合物溶 液在3 h 内可完成破胶,破胶液的表面张力为30 mN/m,油水界面张力为1.9 mN/m,残渣含量为220 mg/L,对岩心 基质的伤害性为9%,达到行业标准要求。  相似文献   

6.
为获得在超高矿化度及210℃高温条件下使用的压裂液稠化剂,以丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙磺酸(AMPS)和丙烯酰吗啉(ACMO)为原料制备了三元聚合物稠化剂(APC-30),考察了APC-30的增黏性、耐温耐盐性和稳定性;研究了APC-30与有机锆交联剂BPA混合交联后形成的冻胶压裂液的耐温耐剪切性、黏弹性和破胶性能。结果表明,在单体质量比AM/AMPS/ACMO=70∶24∶6、复合引发剂K_2S_2O_7-NaHSO_3加量0.4%、抑制剂HCOONa加量1.2%的条件下制备的APC-30的增黏性、耐温耐盐性及稳定性均优于二元聚合物压裂液稠化剂AP-30。在矿化度450 g/L、温度200℃、剪切速率170 s~(-1)的条件下,APC-30的黏度保留率为35%。具有六元杂环结构的吗啉基团的引入可明显提高压裂液冻胶的耐温抗剪切能力。APC-30压裂液冻胶在210℃、170 s~(-1)下剪切2 h的黏度为175.8 mPa·s。APC-30压裂液冻胶具有高弹低黏的特性和优异的压裂悬砂能力,破胶液残渣含量低、易返排,可用于油田现场压裂施工。  相似文献   

7.
一种高温抗剪切聚合物压裂液的研制   总被引:1,自引:0,他引:1  
利用丙烯酰胺、疏水单体N-烷基丙烯酰胺和N-乙烯吡咯环酮合成了一种疏水缔合物压裂液稠化剂ANN,用ANN稠化剂和其他添加剂配制出了高温抗剪切聚合物压裂液。通过对该聚合物压裂液的性能进行评价,结果表明,该聚合物压裂液是非牛顿流体,具有较好的流变性、抗高温性和抗剪切性,并具有优良的黏土稳定性能和低残渣的特点。  相似文献   

8.
柳杨堡气田地层温度高、气藏埋藏深,具有低孔特低渗微细孔喉特点,对于压裂液耐温耐剪切。为此,优选了一种高温有机硼交联剂。分析了基液pH值、交联温度、交联比对交联时间的影响,为该交联剂应用提供了数据支持。利用优选的高温有机硼交联剂配制成压裂液具有耐温耐剪切性好(130℃,170 s~(-1)剪切120 min后黏度仍可达到160 mPa·s)、延迟交联时间可调(交联时间150~180 s)、破胶彻底、残渣少、对储层伤害小的优点,可以满足深层高温储层压裂施工需要。该交联剂用于柳杨堡气田现场试验3井次11段,成功率100%,取得了良好的压裂效果。  相似文献   

9.
张科良  吴琦 《油田化学》2018,35(3):391-394
以十八烷基缩水甘油醚为疏水化改性剂、胍胶原粉为原料、氢氧化钠为催化剂、乙醇为溶剂,通过开环加成反应合成了胍胶衍生物增稠剂HOPG——2-羟基-3-十八烷氧基丙基胍胶,模拟现场配方对采用该稠化剂配制的压裂液的挑挂性能、破胶性能与耐温抗剪切性能进行了评价。采用HOPG配制的压裂液溶解性能和挑挂性能良好;0.3%HOPG+0.3%交联剂JL-13+0.2%APS的压裂液破胶后的残渣含量明显低于用未改性胍胶配制压裂液的,冻胶于90℃下破胶1 h后的破胶液黏度仅为1.02 m Pa·s,破胶液残渣量仅为182 mg/L;该压裂液具有优良的耐温抗剪切性能,冻胶在80℃、剪切速率170 s-1条件下剪切70 min后的表观黏度为165 mPa·s,远大于行业标准(不低于50 m Pa·s)。  相似文献   

10.
针对东北油气田压裂液配液水缺乏及地层水重复利用难的问题,开展了东北油气田地层水特征分析及可重复利用压裂液研究。地层水特征分析以及地层水压裂液优选实验结果表明:苏家屯等几个区块地层水呈弱碱性,生物活性强、Ca2+、Mg2+含量高,使得常规稠化剂溶胀速度慢甚至沉淀、配制的基液稳定性差并且交联无法控制、交联液耐温能力差。最终确定了能采用地层水配制的BCS分子自缔合压裂液及130 ℃配方:0.55%稠化剂BC-S+0.45%稠化增效剂BL-S+0.3%金属离子稳定剂BCG-5+0.2%高温稳定剂B-13+0.3%高效阻垢剂BC-3。性能评价结果表明:BCS压裂液在130 ℃、170 s?1下剪切120 min黏度可达35 mPa·s以上,耐温抗剪切性能良好,携砂性能优于HPG压裂液,并且破胶彻底,破胶液残渣含量仅为1.5 mg/L,表面张力为24.32 mN/m。采用60%的自来水稀释压裂返排液后,配制的BCS压裂液能达到原130 ℃配方的标准,从而实现地层水的多次重复利用。  相似文献   

11.
12.
13.
14.
15.
16.
17.
对石油企业知识型员工流失的现状进行了描述,并分析了流失的原因;阐述了稳定知识型员工队伍的基本思路;从提高待遇、增进感情、发展事业、制度创新四个方面提出了相应的对策。对石油企业的人力资源管理理念的创新进行思考。  相似文献   

18.
Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 10, pp. 9–10, October, 1991.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号