首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
烧结机头电除尘灰的交易日益活跃,而贵金属银含量为其定价的主要指标,故研究对其中银的测定方法具有重要意义。于700℃马弗炉中对试样进行灰化预处理后,再以电热板加热的方式用15mL王水-8mL氢氟酸-5mL高氯酸对其消解,或以微波的方式用6mL王水-3mL氢氟酸-2mL高氯酸对其进行消解,继而以20%~25%(体积分数)王水作为介质,用火焰原子吸收光谱法对消解液进行测定,据此,分别建立了电热板加热消解-火焰原子吸收光谱(FAAS)法与微波消解-火焰原子吸收光谱法两种测定烧结机头电除尘灰中银的方法。共存元素干扰试验表明:样品中除铁和钙外其他元素不干扰测定,通过向校准曲线用银标准溶液系列中加入5 500μg/mL铁、571.76μg/mL钙(相当于800μg/mL氧化钙)的方法可消除铁和钙对测定的干扰。分别采用实验建立的两种方法,对烧结机头电除尘灰实际样品中银进行测定,结果表明,两种方法的测定结果均与电感耦合等离子体原子发射光谱(ICP-AES)法相符,相对标准偏差(RSD,n=11)分别为1.4%~2.2%和2.0%~2.6%,回收率均在95%~104%范围内。  相似文献   

2.
杨艳明 《冶金分析》2019,39(7):58-64
水系沉积物中银、铜、砷、锑、铋和镉等金属元素的准确测定,对地质找矿工作具有重要的指导意义。实验采用王水于水浴条件下溶解样品,通过选择适宜的同位素以及选用干扰元素校正方程克服了质谱干扰,利用仪器软件在线校正了氯离子对砷的干扰,以2%~3%(V/V)王水为测定介质,建立了电感耦合等离子体质谱法(ICP-MS)测定水系沉积物中银、铜、砷、锑、铋和镉6种元素的方法。在优化的实验条件下,各元素校准曲线线性相关系数均在0.9990以上,方法检出限为0.0028~0.045μg/g,测定下限为0.008~0.13μg/g。采用实验方法测定水系沉积物实际样品中银、铜、砷、锑、铋和镉,测定结果分别与采用交流电弧发射光谱法(ES)测定银,原子荧光光谱法(AFS)测定砷、锑、铋,火焰原子吸收光谱法(FAAS)测定铜,石墨炉原子吸收光谱法(GF-AAS)测定镉的结果基本一致;测得结果的相对标准偏差(RSD,n=11)为0.28%~2.0%。将实验方法应用于水系沉积物标准物质分析,银、铜、砷、锑、铋和镉测定结果的相对标准偏差(n=12)为0.45%~6.0%。  相似文献   

3.
采用王水和氟化铵在微波消解仪中消解样品,建立了火焰原子吸收光谱法测定铅烟灰和铅泥中银的方法。考察了溶样方法、消解试剂、微波消解程序、盐酸浓度和干扰离子对测定的影响。结果表明,以王水和氟化铵为消解试剂,采用三步消解程序即60℃、8 atm/1 min, 70℃、13 atm/2 min, 100 ℃、20 atm/3 min,效果最佳;铅泥和铅烟灰中的铜对银的测定没有影响;银浓度在0.2~10 μg/mL范围内与吸光度呈线性关系,方法检出限为0.03 μg/mL。采用本方法对铅烟灰和铅泥样品中的银进行分析,测得结果与常规溶样-原子吸收光谱法基本吻合,相对标准偏差(RSD,n=5)为1.1%~1.3%。  相似文献   

4.
铜含量的高低直接决定了铜精矿的价值,因此铜的准确测定尤其重要。采用盐酸、硝酸、溴、硫酸湿法消解样品,以氟化氢铵除硅,高氯酸除碳,经高温硫酸冒烟法进一步消解样品,实现了光度滴定法对铜精矿中铜的测定。对测定波长、搅拌方式、加液速度、缓冲溶液进行了优化,确定实验条件为:选用520nm作为测定波长;选择搅拌桨机械搅拌方式;控制加液速度为0.40mL/4s;采用pH 5的乙酸-乙酸钠溶液为缓冲溶液。实验表明,以E(电压)-V(体积)滴定曲线定量,在测定时无需进行体积校正,仪器可自动计算滴定终点;而以电位突跃自动判断终点,无需对待测液的实际电位值进行校正,简化了操作步骤。样品中共存元素的干扰试验表明,在滴定前缓慢加入0.5mL 200mg/mL氟化钾溶液可消除样品中铁对测定的干扰,样品中其他共存元素不干扰测定。选择铜精矿标准样品及铜精矿实际样品,按照实验方法对样品中铜进行测定,结果表明,测定值与标准值或标准方法GB/T 3884.1—2012测定值基本一致,测得结果的相对标准偏差(RSD,n=12)在0.11%~0.52%之间。方法满足铜质量分数范围在9.5%~65.0%之间的铜精矿检测需求。  相似文献   

5.
林园 《冶金分析》2018,38(3):41-45
足金样品的检测有着广泛市场需求,但常用的火焰原子吸收光谱法(FAAS)、电感耦合等离子体原子发射光谱法(ICP-AES)对于铅、镉质量分数均小于0.0001%的足金样品无能为力,而电感耦合等离子体质谱法(ICP-MS)标准加入校正-内标法不能用于银、铜含量高(质量分数均大于0.001%)的足金样品检测。采用王水溶解样品后直接用乙酸乙酯萃取,以2%~5%(体积分数)硝酸为测定介质,建立了ICP-MS测定纯度为99.9%~99.999%足金中铜、银、铅、镉4种主要杂质元素的方法。干扰试验表明,足金中高含量银对测定铜、铅、镉没有干扰。在选定的实验条件下,各元素校准曲线的相关系数不小于0.9994,方法测定下限为0.01~0.19μg/g。将实验方法应用于足金实际样品分析,结果的相对标准偏差(RSD,n=6)为1.3%~2.6%,加标回收率为99%~105%。采用实验方法对3种纯度(99.9%、99.99%、99.999%)足金样品中的铜、银、铅和镉进行测定,测得结果分别与原子吸收光谱法(AAS)或ICP-MS标准加入校正-内标法基本一致。方法可实现纯度为99.9%~99.999%足金中银、铜、铅、镉的测定。  相似文献   

6.
目前,铜精矿中氟含量的测定通常采用国标方法GB/T 3884.5—2012和GB/T 3884.12—2010,虽然准确度高,但是操作繁杂,对操作者的要求也很高。实验称取0.50 g样品,添加0.6 g经1 100℃灼烧1 h后的石英砂,在氧气流量为600 mL/min的条件下,采用动态斜率方法,使用自动测氟仪测定氟含量,建立了自动测氟仪测定铜精矿中氟的方法。氟含量在0.014%~0.454%(质量分数)范围内,铜精矿样品中氟测定结果的相对标准偏差(RSD,n=11)均小于5%。按照实验方法测定铜精矿标准物质/样品,测定值与认定值/标准值基本一致。选取铜精矿实际样品,分别按照实验方法和国标方法对氟含量进行测定,并进行F检验和t检验,结果表明实验方法与国标方法的测定结果无显著性差异。  相似文献   

7.
银侧吹炉烟灰样品结构较为复杂,硝酸-酒石酸溶解样品-EDTA滴定测定其中的铋时,样品消解不完全,终点不稳定,测定结果偏低。为了准确测定银侧吹炉烟灰中的铋,试验建立了硝酸-盐酸-氢氟酸-高氯酸消解银侧吹炉烟灰,选择Bi190.234 nm为分析线,使用电感耦合等离子体发射光谱法(ICP-AES)测定银侧吹炉烟灰的铋的方法。试验讨论了溶样方法的选择,介质及加入量的选择,共存元素干扰情况对铋测定结果的影响。结果表明:采用硝酸-盐酸-氢氟酸-高氯酸消解样品能使样品消解完全,加入25mL王水后进行测定结果稳定,共存元素对铋测定结果无影响。铋在0~15μg/mL的校正曲线关系良好,相关系数为0.999998,方法检出限为0.017μg/mL。取不同银侧吹炉烟灰样品进行精密度考察,铋测定结果的相对标准偏差(RSD,n=12)在0.19%~0.58%之间,加标回收率在99.49%~100.25%之间。  相似文献   

8.
镍硼合金作为高温焊接材料广泛应用于航空航天、钢铁冶金、石油化工以及能源电力等领域。镍硼合金的力学性能受硼含量影响,准确测定镍硼合金中的硼含量尤为重要。采用王水分解样品,在10%王水介质中,以电感耦合等离子体原子发射光谱法(ICP-AES)测定硼,建立了ICP-AES测定镍硼合金中硼的方法。实验结果表明,溶液中镍质量浓度不大于2500μg/mL时,不干扰硼的测定,其他共存元素含量较低,均不干扰测定;校准曲线的线性范围为0.25~25.00μg/mL,校准曲线线性相关系数为0.99995;方法检出限为2.0μg/g。方法用于镍硼合金中0.55%~9.81%硼的测定,结果的相对标准偏差(RSD,n=11)为0.92%~4.9%。分别使用实验方法和滴定法、分光光度法测定相同镍硼合金样品中硼,测定结果基本一致。  相似文献   

9.
镍硼合金作为高温焊接材料广泛应用于航空航天、钢铁冶金、石油化工以及能源电力等领域。镍硼合金的力学性能受硼含量影响,准确测定镍硼合金中的硼含量尤为重要。采用王水分解样品,在10%王水介质中,以电感耦合等离子体原子发射光谱法(ICP-AES)测定硼,建立了ICP-AES测定镍硼合金中硼的方法。实验结果表明,溶液中镍质量浓度不大于2500μg/mL时,不干扰硼的测定,其他共存元素含量较低,均不干扰测定;校准曲线的线性范围为0.25~25.00μg/mL,校准曲线线性相关系数为0.99995;方法检出限为2.0μg/g。方法用于镍硼合金中0.55%~9.81%硼的测定,结果的相对标准偏差(RSD,n=11)为0.92%~4.9%。分别使用实验方法和滴定法、分光光度法测定相同镍硼合金样品中硼,测定结果基本一致。  相似文献   

10.
针对区域地球化学调查样品,采用HCl-HNO3-HClO4-HF消解样品、王水提取技术,以59Co、60Ni、65Cu、66Zn、114Cd、208Pb作为测定同位素,采用间接经验公式校正质谱干扰,最终实现了电感耦合等离子体质谱法(ICP-MS)同时对Co、Ni、Cu、Zn、Cd和Pb等6种微量元素的测定。详细对比分析了HCl-HNO3-HClO4-HF消解法、王水消解法、微波消解法3种试样处理方法对土壤、水系沉积物和岩石成分分析标准物质的分析数据,结果表明,HCl-HNO3-HClO4-HF消解法和微波消解法的测定值与认定值相符;因微波消解法一次性处理样品数量有限,不适合大批量地质样品分析,故实验选取HCl-HNO3-HClO4-HF法对样品进行溶样。Co、Ni、Cu、Zn、Cd和Pb的校准曲线相关系数均达0.999 9以上,方法检出限(μg/g)分别为:Co 0.04,Ni 0.69,Cu 0.89,Zn 1.31,Cd 0.029,Pb 0.34。将方法应用于土壤、水系沉积物和岩石成分分析标准物质中6种金属元素的测定,结果与认定值基本一致,相对标准偏差(RSD,n=12)均小于8%。方法应用于实际区域地球化学调查样品分析,结果与X射线荧光光谱法(XRF)相吻合。  相似文献   

11.
采用铅火试金法富集铜精矿中的贵金属、微波消解溶解得到贵金属合粒,并利用电感耦合等离子体质谱法(ICP-MS)对得到的溶液进行检测。在火试金条件的选择中,分别对熔融时间、灰吹温度和灰吹时间进行了讨论,确定了这三个参数的最佳值分别为15 min、960 ℃和1 h。在微波消解条件的选择中,对溶剂和用量进行了讨论,确定了10 mL王水溶解贵金属合粒效果最佳。此外,还分别就同量异位素、多原子离子、难熔氧化物与双电荷离子产生的干扰及消除进行了讨论。测定了三种铜精矿样品中金、钯、铂元素的含量,检出限分别为0.04、0.05、0.1 ng/g,相对标准偏差为1.2%~4.0%。  相似文献   

12.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。  相似文献   

13.
将样品焙烧后采用蒸汽加热王水消解,用两块聚氨酯泡塑分两次吸附消解后样品溶液中的痕量Au,将两块泡塑合并、灰化,用王水溶解,以Re为内标进行校正,实现了采用电感耦合等离子体质谱法(ICP-MS)对化探样品中痕量Au的测定。对消解条件、吸附条件和脱附条件进行了优化,结果表明:采用蒸汽加热消解所得到的Au测定结果与电热板消解相同,但蒸汽加热消解方法能够明显节约电力能源并能有效降低外来污染;选用化探金标准物质为试验对象,在吸附时间相同的条件下,分两次投入2块泡塑进行吸附,Au的回收率为97%~101%,比一次投入2块泡塑的Au回收率87%~92%更接近100%;采用先在180℃灰化20min,再经50min升温至700℃灰化1h的方法对载Au泡塑进行灰化,化探金标准物质中Au的回收率稳定在100%附近。在选定的实验条件下,校准曲线的线性相关系数为0.9996,方法检出限为0.13ng/g,测定下限为0.43ng/g,测定上限为120ng/g。应用实验方法对3件化探金标准物质、3件土壤样品和3件水系沉积物样品中Au进行了测定,结果表明:化探金标准物质的测定值与认定值相符;Au测定值的相对标准偏差(RSD,n=12)为2.9%~6.4%。按照实验方法对化探金标准物质进行加标回收试验,回收率为98%~104%。  相似文献   

14.
采用王水消解无铅焊料样品,基体匹配法绘制校准曲线消除基体干扰对测定结果的影响,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定无铅焊料中银、铜、铅、铁、锌、镉、砷、铝、锑、铋、铟、镍等12种元素的方法。在选定的实验条件下,方法中各元素的检出限在0.000 2~0.016 μg/mL之间,各元素校准曲线线性相关系数均大于0.999 5。按照实验方法测定样品,加标回收率为87%~125%,测定结果的相对标准偏差(RSD,n=6)在0.25%~5.1%之间,测定结果与参考值一致。  相似文献   

15.
建立了超声辅助王水消解土壤样品的前处理方法,并结合电感耦合等离子体原子发射光谱法(ICP-AES)和电感耦合等离子体质谱法(ICP-MS)对土壤样品中铜、锌、镍、铁、锰、铅、砷、汞、铬、镉等10种元素进行测定。通过试验确定王水用量为5mL、超声水浴温度为80℃、超声提取时间为45min的超声提取条件。在优化的仪器条件下,按照实验方法测得的土壤样品中10种元素的校准曲线线性相关系数为0.9996~0.9999;各元素的检出限为0.0021~0.23mg/kg,各元素的测定下限为0.0070~0.78mg/kg。按照实验方法(超声王水提取-ICP-AES/ICP-MS)测定土壤样品中铜、锌、镍、铁、锰、铅、砷、汞、铬、镉,测定结果的相对标准偏差(RSD,n=6)为0.39%~7.8%;除铁、锰的提取值较小外,其他元素的测定结果与采用国标方法(GB 15618—1995、GB/T 22105.1—2008)得到的测定值基本一致;按照实验方法测定土壤标准物质GBW07404、GBW07406、GBW07407、GBW07427中铜、锌、镍、锰、铅、砷、汞、铬、镉,除了锰由于其在原土中主要以氧化物结合态存在,测定结果偏低以外,其他元素测定值与认定值相吻合。  相似文献   

16.
用三氧化二锑与还原剂面粉发生氧化还原反应后生成的金属锑粒捕集样品中金,在微波消解仪中以40%王水(V/V,下同)溶解锑合粒,建立了一种高分辨率连续光源火焰原子吸收光谱法测定金矿石中金的新方法。以矿石中金和银成分分析标准物质为研究对象,采用与样品配料相同配方的混合试剂为覆盖剂进行试验,结果表明,金测定值比与无覆盖剂时相比更接近认定值。对灰吹器皿进行了试验,结果表明,用镁砂灰皿灰吹后迅速取出灰皿并浸入水中使合粒凝结,可实现锑合粒与锑扣高温脱皮生成浮渣的分离。谱线干扰试验表明,λAu=242.795 nm在242.65~242.94 nm范围内没有受到其他共存元素的谱线干扰。在优化的实验条件下,在0.01~10.00 μg/mL范围内,金吸光度与其对应的质量浓度采用二次方程最小二乘法拟合校准曲线,决定系数为0.999 8,特征浓度为0.065 94 μg/mL,方法检出限为0.003 7 μg/mL,方法定量限为0.012 3 μg/mL。按照选定的实验方法对金矿石样品、矿石中金和银成分分析标准物质和化探金标准物质中金进行测定。结果表明,对于实际样品,相对标准偏差(RSD,n=9)为1.5%~4.7%,加标回收率为95%~103%,满足地质矿产行业标准DZ/T 0130—2006中对于回收率的要求;对于标准物质,测定值与认定值一致,相对标准偏差(n=9)在1.2%~3.9%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号