首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设计并制备了一种可应用于恶劣环境的基于LTCC(低温共烧)陶瓷的集成温度和压力的双参数传感器。温度变化使LTCC基底介电常数变化,引起LC谐振电路的谐振频率变化;压力使LC谐振电路的电容极板间距离减小,从而使谐振频率发生变化,然后通过无线磁耦合的方式读取传感器信号。在高温压力复合平台对传感器温度和压力特性进行了测试和分析。实验结果表明:测量的传感器谐振频率随压力成线性减小;在相同压力下,传感器谐振频率随着温度的升高而减小;温度升高会使压力传感器响应灵敏度提升。  相似文献   

2.
低温环境下MEMS微构件的动态特性及测试系统   总被引:1,自引:1,他引:0  
研究了微机电系统(MEMS)微构件的谐振频率等动态特性在低温环境下的变化规律,从理论上分析了改变环境温度对微悬臂梁谐振频率的影响,并对低温环境下微构件的动态特性测试技术进行了研究。研制了低温环境下MEMS动态特性测试系统,采用半导体冷阱实现低温环境,利用压电陶瓷作为底座激励装置的驱动源,通过底座的冲击激励,使微悬臂梁处于自由衰减振动状态,使用激光多普勒测振仪对微悬臂梁的振动响应进行检测,从而获得微悬臂梁的谐振频率。利用研制的测试系统,在-50℃~室温的环境下对单晶硅微悬臂的谐振频率进行了测试,结果表明,随着温度的降低,微悬臂梁的谐振频率略有增大,其谐振频率的温度变化率约为-0.263 Hz/K,与理论分析的结果基本一致。该测试装置能够有效地完成在-50℃~室温环境下微构件的动态特性测试。  相似文献   

3.
文中基于石英音叉传感器测量流体密度和黏度的理论,搭建了实验测试平台,验证了该传感器可同时测量流体密度和黏度的可行性.另外,实验测量了石英音叉谐振频率受温度影响的程度,为石英音叉传感器在更高温度下测量流体的密度和黏度提供温度校准依据.实验结果表明:当流体温度20~80℃变化时,石英音叉传感器测量5种流体密度的相对误差基本...  相似文献   

4.
本文研究了工作温度和负载变化对换能器谐振频率的影响规律并设计了反馈控制系统以实现谐振频率跟踪。 首先基 于磁致伸缩换能器机电等效电路,推导了以工作温度 T 和负载 F 为自变量的谐振频率计算模型,搭建了温度可控、负载可调的 谐振频率测试系统;然后对实验测试数据进行分段线性拟合和曲面数值拟合,得到了满足线性相关度和曲面拟合优度要求的谐 振频率关于温度和负载变化的二元函数模型,进而确定了谐振频率计算模型的相关参数;最后依据计算模型设计了反映温度和 负载变化的频率跟踪反馈控制系统并测试了换能器输出特性,结果表明换能器的振动加速度幅值平均提高了 31. 11% ,且谐振 频率能跟随温度和负载的变化而自动调整,实现高效率稳定运行。  相似文献   

5.
为解决当前模拟输出式加速度传感器测试精度相对较低的问题,利用谐振式传感器重复性好、分辨率高、稳定性优良的特点,设计了一种谐振式加速度传感器。通过理论计算,得出了线加速度与敏感元件谐振频率之间的关系,并通过有限元软件对其进行了仿真计算。计算结果显示,传感器在空载状况下谐振频率的理论计算结果与有限元分析结果分别为722.2Hz与720.87Hz。在1g加速度下两种计算方法得到的谐振频率计算结果分别为727.3Hz与726.28Hz,两种情况的相对误差仅为0.18%与0.14%。对加工完毕的加速度传感器进行了测试,测试结果表明:在谐振状态下,传感器的敏感元件的谐振频率大约为718.2Hz,与理论计算及仿真结果基本接近,证明了设计的正确性。  相似文献   

6.
为解决当前模拟输出式加速度传感器测试精度相对较低的问题,利用谐振式传感器重复性好、分辨率高、稳定性优良的特点,设计了一种谐振式加速度传感器.通过理论计算,得出了线加速度与敏感元件谐振频率之间的关系,并通过有限元软件对其进行了仿真计算.计算结果显示,传感器在空载状况下谐振频率的理论计算结果与有限元分析结果分别为722.2Hz与720.87Hz.在1g加速度下两种计算方法得到的谐振频率计算结果分别为727.3Hz与726.28Hz,两种情况的相对误差仅为0.18%与0.14%.对加工完毕的加速度传感器进行了测试,测试结果表明:在谐振状态下,传感器的敏感元件的谐振频率大约为718.2Hz,与理论计算及仿真结果基本接近,证明了设计的正确性.  相似文献   

7.
针对声表面波(SAW)传感器对品质因数、寿命和成本的要求,研制了Parylene增强型SAW传感器。根据金属剥离工艺要求,利用LOR剥离胶和AZ5214光刻胶双层胶旋涂工艺制作了梯形结构;在传统光学光刻条件下制作了2μm的超细叉指电极。传感器制作过程利用了MEMS工艺,不仅实现了传感器的微型化,还可以批量化生产,得到的以石英为基底的传感器谐振频率达到249.077 953 MHz。最后在传感器的表面镀制Parylene聚合物薄膜以提高基底温度灵敏度。实验对比了未增强型(未镀Parylene)和增强型SAW传感器(镀Parylene)的温度灵敏度。结果显示:未增强型SAW传感器温度灵敏度为2.048kHz/℃,Parylene增强型SAW传感器温度灵敏度为2.855kHz/℃,比前者提高了0.807kHz/℃,且镀Parylene之后谐振频率变化量与温度具有较好的线性度,线性相关系数达到0.996 15。实验证明,Parlene增强型SAW传感器的性能优于未增强的SAW传感器。  相似文献   

8.
超低温薄膜压力传感器可用于液氢、液氮、液氧等低温环境的压力测量,目前国内外超低温压力传感器产品的工作温度最低为-200 ℃.文中主要介绍了对超低温薄膜压力传感器的研究,通过薄膜压力传感器设计和工艺技术研究,成功研制出超低温薄膜压力传感器,并在-253(液氢)~+60 ℃温度环境下进行压力传感器静态性能测试,结果表明传感器性能指标优异,实现了超低温薄膜压力传感器技术突破.  相似文献   

9.
谐振式MEMS温度传感器设计   总被引:4,自引:2,他引:2  
为了实现以频率输出为信号的气象温度测量,提出了一种基于双层悬臂梁的谐振式微温度传感器。基于双悬臂梁不同材料热膨胀系数的差异会导致悬臂梁谐振频率偏移的原理,采用压电方式同时实现悬臂梁的驱动及其谐振频率的检测,从而实现温度的测量。根据硅基传感器的正面腐蚀工艺,设计了谐振悬臂梁的双层结构,采用有限元方法分析了悬臂梁的谐振模态、可利用的振型及其温度与各模态谐振频率的关系,并利用多普勒振动系统对悬臂梁的谐振特性进行了研究。实验发现悬臂梁的二阶弯曲振型Q值相对于其它振型是最大的,其Q值约为150;高阶振型特别是二阶弯曲振型适合用于以ZnO为压电材料的温度传感器的频率检测,并且具有相对较高的灵敏度(约为20Hz/℃)和频率温度系数(1.9×10-4/℃)。结果表明,微型温度传感器能够满足气象温度检测的要求,并具有抗干扰能力强、灵敏度高、信号传输接口简单等优点。  相似文献   

10.
本文通过分析石英陀螺的工作原理,设计了闭环自激驱动、低噪声相敏解调原理的接口电路,并研究了驱动力耦合对零位输出造成的影响,以提高石英陀螺的环境适应性。通过研究传感器敏感表头的空气阻尼和谐振频率等方面的温度特性,得出温度对驱动力幅值的影响。进而提出通过驱动力幅值进行温度补偿的方法。对接口电路温度特性以及对陀螺零位输出的影响进行了分析,设计了全温区带宽恒定的运算放大器单元,抑制由于检测信号中高次谐波分量比例变化产生的温度漂移,并在高压N阱CMOS工艺下流片,实现低温漂接口ASIC。在-45℃~85℃的温度范围内对石英陀螺整机进行零位温度循环测试,利用驱动力幅值对零位输出进行三阶拟合补偿,补偿后全温零位温度漂移小于20°/hr(1σ),短期稳定性为5°/hr,输出噪声为0.001°/s/√Hz。  相似文献   

11.
文章介绍了一种新型的微质量传感器,通过测量QCM的谐振频率变化得出在QCM传感器表面吸附的微质量变化。文章还详细介绍了QCM传感器的设计和夹具的结构设计,并用ANSYS 9.0对QCM传感器进行了三维有限元建模,分析了电极尺寸对有限元谐振元振动特性的影响,提出了优化设计的方案,最后进行了实验。实验结果与理论值基本相同,从而证明了结构设计的合理性。  相似文献   

12.
硅微谐振传感器微弱频率变化的提取新方法   总被引:2,自引:1,他引:1  
由于硅微谐振传感器在感测压力、温度变化时存在频率变化较弱的特点,提高其灵敏度和测试分辨率显得尤为必要,所以提出利用系统从混沌状态到大周期状态转变时所表现出的共振锁频性质,进行了传感器微弱频率变化信号的仿真实验提取.将带通采样和降采样应用到信号预处理,建立了利用混沌的测试系统,同时指出该系统能实现传感器不同测试精度和灵敏度要求的柔性测量.  相似文献   

13.
在无线无源互感耦合传感检测系统中,需要通过检测远端敏感单元的谐振频率来读取传感器的谐振信息。因此,设计一个高精度的宽带线性扫频源来满足测试系统实现稳定和精准的测试。为了解决这个问题,设计了一种基于DDS技术的高带宽线性扫频源,带宽为1~100 MHz,频率精度为O.116 Hz,最小扫频步进值为0.233 Hz,驱动能力为6dBm。MATLAB仿真分析了线性扫频源的扫频步进值不同时对LC谐振传感器检测精度的影响。并通过实验验证了该线性扫频源在互感耦合谐振器频率读取系统中的可靠性和稳定性。  相似文献   

14.
为了提高传感器的温度和应力的分辨力,阐述一种新型光纤环传感器的结构和频率编码原理.利用不同长度的光纤环传感器具有不同谐振频率的特性实现传感器阵列的准频分复用.重点讨论了耦合系数及光纤环长度对传感器性能的影响,并对参数进行分析和选择.基于频率编码光纤环传感器的温度和应力测量原理,证明了温度的测量分辨力可以达到0.9℃,应力的测量分辨力也可达到1με.  相似文献   

15.
在实验的基础上,利用Matlab对谐振传感器振荡电路进行仿真计算,提出了一谐振式传感器在大温度变化范围内(-40-50℃)稳定振荡的条件及实现方法。  相似文献   

16.
针对管道内流体测量需求,提出基于LC无线无源谐振式传感技术的测量方法。在绝缘管道外表面设计螺旋型的电容和电感,构成非接触式的流体测量LC传感器,LC谐振频率反映流体参数变化。相比常规的电容式传感技术,LC传感器能实现无源无线测试,可用于非实时性流体检测。对水平式管道内水气两相流,进行了静态的模拟测量,实验表明在直径10 mm的亚克力管道内,随着水相含率从10%增加到100%,传感器谐振频率变化15.51 MHz。  相似文献   

17.
针对现有的硅基高温压力传感器不满足更高温度环境(≥500℃)下测试需求的问题,设计并制备了一种基于碳化硅(SiC)材料的电容式高温压力传感器。利用ICP刻蚀工艺和直接键合工艺实现了气密性良好的敏感绝压腔结构,结合金属沉积、金属图形化等MEMS工艺制备了感压敏感芯片。搭建了压力-温度复合测试平台,完成了传感器在0~600℃环境下压力-电容响应特性的测试。测试结果表明,在0~300 kPa内,该传感器灵敏度为4.51×10~(-3) pF/kPa,非线性误差为2.83%;同时测试结果也表明该传感器的温度漂移效应较低,0~600℃环境下电容变化量为8.50~8.65 pF。  相似文献   

18.
文中基于微带天线辐射原理设计了用于金属裂缝检测和表征的传感器。传感器实质是由一个金属谐振腔制成,金属谐振腔的谐振频率对传感器的辐射贴片和金属地的电特性极其敏感。把被测金属结构当作传感器的金属地,金属结构的裂缝扩展导致了传感器谐振频率的偏移。因此,通过读取传感器谐振频率的偏移量来检测和表征金属裂缝。从传感器辐射贴片的两个方向对金属裂缝进行了测试,通过实验测试发现:当金属裂缝沿辐射贴片宽度方向存在时,传感器的检测灵敏度是18 MHz/mm,当裂缝沿辐射贴片长度方向存在时,传感器的检查灵敏度是27.5 MHz/mm。传感器由耐高温的氧化铝和金属银浆料制成,因此可以应用到一些高温、高压恶劣环境下。  相似文献   

19.
构建了含水混合物介电特性模型,设计了基于此模型的开路同轴谐振腔传感器,并指出影响其传感特性的两个主要参数是保护盖介电常数和空载谐振频率。鉴于此,针对保护盖材料及空载谐振频率对传感器传感特性的影响进行了全面分析和仿真。加工了具有不同谐振频率的微波谐振腔及不同材料的端口保护盖。实验结果表明,该模型能够很好地指导传感器的设计,同时选取Al2O3作为保护盖材料及具有空载谐振频率为2.5GHz的谐振腔,具有较好的测量效果。  相似文献   

20.
利用化学腐蚀法对单模光纤(HI-1060)进行端面微加工处理,制作了一种光纤干涉型传感器。将单模光纤一端放置于40%浓度氢氟酸溶液中腐蚀20 min,腐蚀凹槽深度为45μm,制得的传感器条纹对比度为6 d B,波长间隔14 nm。分别设计不同温度及不同折射率的酒精溶液对传感器的温度特性以及折射率特性进行分析研究。实验发现随着温度的增加传感器的谐振波长发生红移,温度灵敏度和线性度为15.3 pm/℃和0.996;随着酒精溶液折射率由1.341 7增加到1.348 3,传感器的谐振波长发生蓝移,折射率灵敏度和线性度为-1 185.7 nm/RIU和0.951。实验结果表明基于化学腐蚀法制作的光纤干涉型传感器对温度以及液体折射率变化均有较高的灵敏度,可用于温度和液体折射率传感测试。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号