首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对基本蚁群算法在路径规划时出现收敛速度慢,易陷局部最优的问题,提出一种改进的蚁群算法。首先,为使算法在搜索时更具导向性引入方向夹角启发因子减少提高搜索速度;其次,融入A*算法的估价函数思想来改进启发函数,降低死锁可能性;最后,提出基于拉普拉斯概率分布的信息素挥发因子自适应策略,加快了算法收敛速度。多次仿真实验表明,所提出的改进算法能够快速,高效地寻找到最优路径,且路径质量优于基本蚁群算法规划出的路径。  相似文献   

2.
针对轮式机器人在多窟障碍地形图中的路径规划问题,为了克服基本蚁群算法的局部最优问题,提高算法的收敛速度,以及节约找寻最优路径的时间,提出了一种基于多维信息素及模糊集的改进蚁群算法。在栅格化地图上,通过模糊集将某一点距离障碍物以及接受目标的信息程度表达出来,重新更新栅格化地图,从而减少地图中搜索空间,节约搜索时间。其次把传统蚁群算法中的一维信息素改进为多维信息素,得到满足多个约束条件下的路径。通过多组仿真实验的结果表明,验证了改进算法的可行性和有效性,提高了基本蚁群算法对最优路径问题的优化性能与收敛速度。与现有算法相比较,迭代次数节约了70%左右,缩小了20%的蚁群数量。  相似文献   

3.
针对基本蚁群算法前期搜索效率低下以及在寻优的过程中会穿过障碍物等问题,提出改进的蚁群算法,即采用动态调整启发因子、信息素初始化改进策略、可选节点的筛选机制方案进行改进工作。通过对基本蚁群算法和改进蚁群算法的仿真结果分析可知,改进后算法的最优路径长度虽然有所增加,但减少了蚂蚁前期到达最优路径的迭代次数,得到一条无碰撞、没有穿过障碍物的路径,且耗时与基本蚁群算法相持平,保证了机器人路径的安全性,提高了算法的前期搜索效率。  相似文献   

4.
准三维机器人路径规划的改进蚁群算法   总被引:1,自引:0,他引:1  
机器人在荒野物资运输和山地自由行走时,需要在山地表面规划出行走路线,为此提出改进的蚁群算法加以求解。根据坡度提出避障规则,在满足避障约束条件下,合理增加路径的多样性;根据当前节点到目标点和起点的距离,重新设计启发式函数,驱使机器人尽量沿着起点和目标点之间的最短路径行进;依据实时路径长度,动态调整挥发系数,以精炼搜索空间、提高收敛性能。将改进蚁群算法与原始算法进行比较,实验结果表明改进蚁群算法的有效性优于原始蚁群算法。  相似文献   

5.
针对轮式机器人在多窟障碍地形图中的路径规划问题,为了克服基本蚁群算法的局部最优问题,提高算法的收敛速度,以及节约找寻最优路径的时间,提出了一种基于多维信息素及模糊集的改进蚁群算法。在栅格化地图上,通过模糊集将某一点距离障碍物以及接受目标的信息程度表达出来,重新更新栅格化地图,从而减少地图中搜索空间,节约搜索时间。其次把传统蚁群算法中的一维信息素改进为多维信息素,得到满足多个约束条件下的路径。通过多组仿真实验的结果表明,验证了改进算法的可行性和有效性,提高了基本蚁群算法对最优路径问题的优化性能与收敛速度。与现有算法相比较,迭代次数节约了70%左右,缩小了20%的蚁群数量。  相似文献   

6.
为了提高移动机器人点对点路径规划的性能,提出了均匀粒子群蚁群融合算法。首先分析了粒子群算法原理,找出了导致算法"早熟"的搜索机制缺陷,提出了均匀粒子群算法,此算法改进了粒子群算法的搜索机制,保证了在迭代过程中的粒子多样性,克服了算法"早熟"问题;介绍了蚂蚁系统和蚁群系统算法的区别,提出了均匀粒子群蚁群融合算法,首先使用均匀粒子群算法搜索次优路径,在此路径上撒播信息素,然后使用蚁群算法寻找最优路径。实验结果表明,融合算法规划出的路径最短,而且迭代效率高、容错能力强。  相似文献   

7.
蚁群算法是一种全局智能仿生算法,具有较强的鲁棒性和环境适应性,在栅格化环境下适用于机器人路径规划,但会带来搜索出的路径拐弯过多、运动延时、移动累计误差增大和产生额外机械磨损等问题。为解决上述问题,提出了路径平滑处理策略,对蚁群算法每次迭代出的最短路径进行了平滑处理,针对每次迭代搜索出的最短路径栅格节点集合,在不妨碍机器人运动的前提下,拉直移动路径或减缓拐弯角度,从而避免不必要的急拐弯。仿真结果表明,加入平滑处理策略后的蚁群算法能够达到有效减少移动路径长度、降低转弯次数、缩短运动时间的目的。  相似文献   

8.
为解决多服务机器人全局路径规划的问题,将基本蚁群算法应用到多服务机器人全局路径规划上,并对基本的蚁群算法作了改进.对基于算法的多服务机器人系统的构成进行了描述,接着对多服务机器人系统环境的表示方法及算法中对应问题的描述和定义进行了研究.对应用到多服务机器人系统的基本蚁群算法提出了几种改进的策略,并对改进的蚁群算法应用到...  相似文献   

9.
针对激光导航轮式机器人在复杂环境中路径规划原始算法存在路径较长和收敛速度较慢的问题,提出了一种改进蚁群算法。在实际算法中,先利用MAKLINK图论建立AGV运行环境的空间模型,接着用Dijkstra算法搜索优化路径;然后,在Dijkstra算法的基础上采用蚁群算法搜索最优路径;紧接着,在改进蚁群算法中,优先选择搜索前后两节点同起点到终点夹角一致或相差不大的后一个搜索节点,获取新的信息素更新策略,并进行角度的初始化和信息素计算;最后,在Matlab上完成算法的编写并得到仿真结果。结果表明,改进蚁群算法路径优化性能更好,对实际环境中机器人的路径规划具有指导意义。  相似文献   

10.
路径规划是机器人研究的核心内容之一。为了解决针对于白车身生产线焊接机器人路径规划效率低下的问题,提出了一种改进的焊接机器人路径规划的方法,分析了焊接机器人路径规划问题的构成。并针对基础蚁群算法在解决焊接机器人路径规划时,容易出现搜索时间过长、效率低、容易陷入局部最优等问题,引用了粒子群算法。利用粒子群算法对蚁群算法随机产生的若干组较优解进行交叉和变异操作,得到了更有效的解。最后在MATLAB中利用优化后的蚁群算法计算最佳焊接路径,并与基础蚁群算法的结果对比。对比情况表明:优化的蚁群算法在解决焊接机器人路径规划问题上能得到更优的焊接路径和稳定性。  相似文献   

11.
为了提高移动机器人路径规划的质量,提出了基于改进粒子群算法的机器人路径规划方法。对障碍物进行膨化处理,简化了障碍物模型;通过坐标变换,将二维优化问题简化为一维优化问题;建立了包含路径长度和路径平滑度的适应度函数;分析了传统粒子群算法及缺陷,引入了跳出机制和牵引操作,跳出机制保持了种群多样性和全局搜索能力,牵引操作加快了算法收敛速度,从而提出了改进粒子群算法;经仿真实验验证,改进算法规划的路径在长度、平滑度、规划时间上均具有优势。  相似文献   

12.
针对复杂地图环境下的机器人路径规划问题提出一种聚类融合交叉粒子群算法,以避免传统粒子群算法(Parti-cle Swarm Optimization,PSO)容易陷入早熟且搜索精度差的问题.首先,根据粒子的适应度值对粒子进行k均值聚类,使较多的良性群体极值位置得到保存,从而增强粒子的探索能力;其次,用交叉、变异算子增加...  相似文献   

13.
14.
针对飞机蒙皮对缝间隙与阶差测量中执行机构的路径规划和运动控制难题,传统的轮式机器人灵活性、机动性较差,提出将四轮全向机器人作为飞机蒙皮测量的执行机构,具有平面内零半径转向、可向任意方向运动的特点。采用基于蚁群算法的路径规划方法,把规划好的路径信息转变为全向机器人可识别、可执行的运动指令,将测量传感器运送到多个被测位置完成蒙皮测量任务。通过iGPS实时获得全向机器人在飞机测量现场的位姿,实现其自主标定与导航。  相似文献   

15.
蚁群算法是一种源于大自然中生物世界的仿生类算法,它模仿昆虫王国中蚂蚁搜索食物的行为特征,是一种通用型随机优化方法。本文将蚁群算法引入全自主机器人路径规划之中,让机器人寻求一条最优路径。仿真实验证明了该方法的可用性和有效性。  相似文献   

16.
基于蚁群算法AS-R移动式机器人路径规划的研究   总被引:2,自引:0,他引:2  
蚂蚁算法是—种新的仿生优化方法。它吸收了昆虫中蚂蚁的行为特性,通过其内在的搜索机制,在一系列组合优化问题求解中进行寻优。本文提出了一种适用于移动式机器人路径规划的蚁群优化方法,该方法在移动式机器人执行任务时可以在避开障碍的情况下,以最短路径到达目标点。实验研究证明了该方法的可行性和优越性。  相似文献   

17.
采用蚁群算法(Ant Colony Optimization,ACO)求解棉花搬运机器人全局路径规划时,会出现规划效率低、蚁群算法参数的改变对规划效果影响大等问题。提出了一种粒子群参数优化的改进蚁群算法,该算法能够根据地图情况的不同智能地调节参数组合,从而在各种地图中能够发挥蚁群算法的最佳性能。通过实验数据分析蚁群算法重要参数对规划效率的影响,进行参数优化;针对改进后算法耗时大的问题,提出粒子群算法的动态惯性权重调整策略和改进的蚁群算法信息素更新策略,保证求解质量的同时,提高了优化效率,在障碍物分布不同的地图中进行仿真实验,通过与蚁群算法路径规划结果的对比,证明了粒子群参数优化的改进蚁群算法能够发挥蚁群算法最佳性能,可提高移动机器人到达目标点的速度并降低机器人运动过程中的损耗。  相似文献   

18.
针对机器人进行避障路径规划时存在收敛速度差、规划路径长、迭代次数多以及规划时间长的问题,提出基于改进蚁群算法的巡检机器人避障路径规划方法。首先使用栅格法划分巡检机器人工作环境,通过对像素矩阵等指标的分析,构建栅格地图模型;基于人工势场法提出蚁群路径规划算法,使蚁群适应子空间的搜索;最后在模型中利用该算法,寻找该模型的最佳路径。实验结果表明,运用该方法进行路径规划时,收敛速度高、规划路径短、迭代次数少以及规划时间短。  相似文献   

19.
实际环境下,移动机器人从给定起始位置移动至给定目标点位置的路径是多条和复杂的。针对传统蚁群算法基本参数的设定多凭经验设定,提出了多参数级联编码遗传算法优化蚁群算法参数的方法。采用了上海未来伙伴创新核IN-R机器人研究平台对其进行实验验证。优化了蚁群算法参数,为蚁群算法参数设定提供了一定的理论依据。  相似文献   

20.
《机械传动》2016,(7):58-61
传统的蚁群算法在移动机器人路径规划过程中,在加速算法收敛时易陷入局部最优问题,针对此问题提出了一种新型蚁群算法的移动机器人路径规划方法。首先建立了机器人路径规划数学模型,在此基础上对传统的蚁群算法进行了改进,将环境中局部的机器人路径信息引入到蚁群信息素的初始化和路径选择概率中,提高了蚁群算法的收敛速度并防止算法早熟。通过引入交叉操作并对蚁群算法中参数进行调整,避免了算法陷入局部最优。仿真结果表明,所提方法能够明显提高最佳路径搜索能力,整体性能优于传统蚁群算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号