首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In this paper, we develop a model-based frame scheduling scheme, called MFS, to enhance the capacity of IEEE 802.11-operated wireless local area networks (WLANs) for both transmission control protocol (TCP) and user datagram protocol (UDP) traffic. In MFS each node estimates the current network status by keeping track of the number of collisions it encounters between its two consecutive successful frame transmissions, and computes accordingly the current network utilization. The result is then used to determine a scheduling delay to be introduced before a node attempts to transmit its pending frame. MFS does not require any change in IEEE 802.11, but instead lays a thin layer between the LL and medium access control (MAC) layers. In order to accurately calculate the current utilization in WLANs, we develop an analytical model that characterizes data transmission activities in IEEE 802.11-operated WLANs with/without the request to send/clear to send (RTS/CTS) mechanism, and validate the model with ns-2 simulation. All the control overhead incurred in the physical and MAC layers, as well as system parameters specified in IEEE 802.11, are figured in. We conduct a comprehensive simulation study to evaluate MFS in perspective of the number of collisions, achievable throughput, intertransmission delay, and fairness in the cases of TCP and UDP traffic. The simulation results indicate that the performance improvement with respect to the protocol capacity in a WLAN of up to 300 nodes is 1) as high as 20% with the RTS/CTS and 70% without the RTS/CTS in the case of UDP traffic and 2) as high as 10% with the RTS/CTS and 40% without the RTS/CTS in the case of TCP traffic. Moreover, the intertransmission delay in MFS is smaller and exhibits less variation than that in IEEE 802.11; the fairness among wireless nodes in MFS is better than, or equal to, that in IEEE 802.11.  相似文献   

2.
We propose a packet-level model to investigate the impact of channel error on the transmission control protocol (TCP) performance over IEEE-802.11-based multihop wireless networks. A Markov renewal approach is used to analyze the behavior of TCP Reno and TCP Impatient NewReno. Compared to previous work, our main contributions are listed as follows: 1) modeling multiple lossy links, 2) investigating the interactions among TCP, Internet Protocol (IP), and media access control (MAC) protocol layers, specifically the impact of 802.11 MAC protocol and dynamic source routing (DSR) protocol on TCP throughput performance, 3) considering the spatial reuse property of the wireless channel, the model takes into account the different proportions between the interference range and transmission range, and 4) adopting more accurate and realistic analysis to the fast recovery process and showing the dependency of throughput and the risk of experiencing successive fast retransmits and timeouts on the packet error probability. The analytical results are validated against simulation results by using GloMoSim. The results show that the impact of the channel error is reduced significantly due to the packet retransmissions on a per-hop basis and a small bandwidth delay product of ad hoc networks. The TCP throughput always deteriorates less than ~ 10 percent, with a packet error rate ranging from 0 to 0.1. Our model also provides a theoretical basis for designing an optimum long retry limit for IEEE 802.11 in ad hoc networks.  相似文献   

3.
Wireless technologies provide mobile access and enable rapid andcost‐effective network deployment. But a wireless link is generally accompanied by high interference, transmission errors and a varying latency. The erratic packet losses usually lead to a curbing of the flow of segments on the TCP connection, and thus limit TCP performance. This paper presents a threshold control mechanism with cross‐layer response approach for improving TCP Vegas performance in IEEE 802.11 wireless networks. By making slight modifications to the legacy IEEE 802.11 MAC and TCP, the numerical results reveal that the proposed scheme provides a significant improvement in TCP performance under IEEE 802.11 wireless environments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Current TCP is not able to distinguish corruption losses from packet loss events. Hence, high transmission errors and varying inherent latency within a wireless network would cause seriously adverse effects to TCP performance. To improve TCP in IEEE 802.11 multi-hop ad hoc wireless networks, this study proposes an error recovery mechanism based on coordination of TCP and IEEE 802.11 MAC protocols. The simulation results confirm that the proposed error recovery approach could provide a more efficient solution for frequent transmission losses, and enable TCP to distinguish between congestion errors and transmission errors, and thus, to respond with proper remedial actions.  相似文献   

6.
The concept of a forwarding node, which receives packets from upstream nodes and then transmits these packets to downstream nodes, is a key element of any multihop network, wired or wireless. While high-speed IP router architectures have been extensively studied for wired networks, the concept of a "wireless IP router" has not been addressed so far. We examine the limitations of the IEEE 802.11 MAC protocol in supporting a low-latency and high-throughput IP datapath comprising multiple wireless LAN hops. We first propose a wireless IP forwarding architecture that uses MPLS with modifications to 802.11 MAC to significantly improve packet forwarding efficiency. We then study further enhancements to 802.11 MAC that improve system throughput by allowing a larger number of concurrent packet transmissions in multihop 802.11-based IP networks. With 802.11 poised to be the dominant technology for wireless LANs, we believe a combined approach to MAC, packet forwarding, and transport layer protocols is needed to make high-performance multihop 802.11 networks practically viable.  相似文献   

7.
Widespread deployment of wireless local area networks and a gradual increase in streaming applications have brought about a demand for improved quality of service (QoS) in wireless networks. However, increasing user datagram protocol based high priority multimedia traffic and the class differentiation introduced in QoS protocols, has resulted into transmission control protocol (TCP) starvation and increased spurious timeouts. While today’s Internet traffic is still dominated by TCP based applications, the negative effects of IEEE 802.11e enhanced distributed coordination function (EDCF) scheme on TCP performance in the presence of high priority traffic have not been extensively explored. In this paper, the performance of TCP in 802.11e WLAN competing with high priority traffic is examined. The prioritised adaptive enhanced scheme (PAD_EDCF) is proposed. The proposed scheme gives priority to TCP control packets in order to improve the low traffic transmission flow and acquires additional capability of adjusting the MAC parameters based on the traffic load condition. Simulation results demonstrate that the proposed scheme significantly improves TCP performances in terms of traffic efficiency, throughput and reduces delay.  相似文献   

8.
There is a vast literature on the throughput analysis of the IEEE 802.11 media access control (MAC) protocol. However, very little has been done on investigating the interplay between the collision avoidance mechanisms of the 802.11 MAC protocol and the dynamics of upper layer transport protocols. In this paper, we tackle this issue from an analytical, simulative, and experimental perspective. Specifically, we develop Markov chain models to compute the distribution of the number of active stations in an 802.11 wireless local area network (WLAN) when long-lived transmission control protocol (TCP) connections compete with finite-load user datagram protocol (UDP) flows. By embedding these distributions in the MAC protocol modeling, we derive approximate but accurate expressions of the TCP and UDP throughput. We validate the model accuracy through performance tests carried out in a real WLAN for a wide range of configurations. Our analytical model and the supporting experimental outcomes show that 1) the total TCP throughput is basically independent of the number of open TCP connections and the aggregate TCP traffic can be equivalently modeled as two saturated flows; and 2) in the saturated regime, n UDP flows obtain about n times the aggregate throughput achieved by the TCP flows, which is independent of the overall number of persistent TCP connections.  相似文献   

9.
Proliferation of mobile communication devices necessitates a reliable and efficient medium access control (MAC) protocol. In this paper, A MAC protocol, called extended sliding frame reservation Aloha (ESFRA), based on sliding frame R-Aloha (SFRA) is proposed for network access technique. ESFRA is particularly designed to solve the mobile hidden station (MHS) problem in a mobile ad hoc network (MANET) by including relative locations of transmitting stations in the packet frame information header. The MHS problem is unique in mobile networks and occurs if a mobile station enters in a collision free zone of any ongoing communication and disturbs this communication with its transmission. In addition to the MHS problem, ESFRA simultaneously solves hidden station, exposed station, and neighborhood capture problems typically observed in wireless networks. A Markov model of ESFRA is developed and provided here to estimate throughput, delay and collision probabilities of the proposed protocol. The Markov modeling is extended to the analysis of SFRA and IEEE 802.11 to compare these competing MAC protocols with ESFRA. The analysis shows that ESFRA decreases frame transmission delay, increases throughput, and reduces collision probabilities compared to IEEE 802.11 and SFRA. ESFRA improves the network throughput 28 percent compared to that of IEEE 802.11, and 33 percent compared to that of SFRA. The improved performance is obtained at the expense of the synchronization compared to IEEE 802.11, but there is virtually no extra cost compared to SFRA.  相似文献   

10.
In this paper, we present the challenges in supporting multimedia, in particular, VoIP services over multihop wireless networks using commercial IEEE 802.11 MAC DCF hardware, and propose a novel software solution, called Layer 2.5 SoftMAC. Our proposed SoftMAC resides between the IEEE 802.11 MAC layer and the IP layer to coordinate the real-time (RT) multimedia and best-effort (BE) data packet transmission among neighboring nodes in a multihop wireless network. To effectively ensure acceptable VoIP services, channel busy time and collision rate need to be well controlled below appropriate levels. Targeted at this, our SoftMAC architecture employs three key mechanisms: 1) distributed admission control for regulating the load of RT traffic, 2) rate control for minimizing the impact of BT traffic on RT one, and 3) nonpreemptive priority queuing for providing high priority service to VoIP traffic. To evaluate the efficacy of these mechanisms, extensive simulations are conducted using the network simulator NS2. We also implement our proposed SoftMAC as a Windows network driver interlace specification (NDIS) driver and build a multihop wireless network testbed with 32 wireless nodes equipped with IEEE 802.11 a/b/g combo cards. Our evaluation and testing results demonstrate the effectiveness of our proposed software solution. Our proposed collaborative SoftMAC framework can also provide good support for A/V streaming in home networks where the network consists of hybrid WLAN (wireless LAN) and Ethernet  相似文献   

11.
IEEE 802.11 protocol supports adaptive rate mechanism, which selects the transmission rate according to the condition of the wireless channel, to enhance the system performance. Thus, research of multi‐rate IEEE 802.11 medium access control (MAC) performance has become one of the hot research topics. In this paper, we study the performance of multi‐rate IEEE 802.11 MAC over a Gaussian channel. An accurate analytical model is presented to compute the system saturation throughput. We validate our model in both single‐rate and multi‐rate networks through various simulations. The results show that our model is accurate and channel error has a significant impact on system performance. In addition, our numerical results show that the performance of single‐rate IEEE 802.11 DCF with basic access method is better than that with RTS/CTS mechanism in a high‐rate and high‐load network and vice versa. In a multi‐rate network, the performance of IEEE 802.11 DCF with RTS/CTS mechanism is better than that with basic access method in a congested and error‐prone wireless environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
目前的IEEE 802.11标准在物理层支持多速率传输,但在媒体接入控制(MAC,Media AccessControl)层却没有相应的速率自适应方法。针对目前Ad Hoc网络自适应速率控制方法的不足和在无线通信环境下TCP性能会大幅度恶化,提出了一种改进的MAC层速率自适应协议,该协议实现简单,与传统标准兼容性好,在提高TCP吞吐量的基础上能适应快速变化的无线信道,且能实现分段数据包的速率自适应传输。仿真结果表明,该协议比RBAR协议有更好的吞吐量。  相似文献   

13.
无线Ad hoc网络多采用IEEE802.11系列标准,在物理层为数据传输提供了多速率能力。为了充分利用多速率能力提高系统的吞吐量,速率自适应MAC协议根据对当前信道质量的估计,选择最佳的数据传输速率。在分析了速率自适应MAC协议的基本工作过程之后,重点综述了目前存在的速率自适应MAC协议,并讨论了进一步研究的方向。  相似文献   

14.
We propose and evaluate the performance of a new MAC-layer protocol for mobile ad hoc networks, called the Slow Start Power Controlled (abbreviated SSPC) protocol. SSPC improves on IEEE 802.11 by using power control for the RTS/CTS and DATA frame transmissions, so as to reduce energy consumption and increase network throughput and lifetime. In our scheme the transmission power used for the RTS frames is not constant, but follows a slow start principle. The CTS frames, which are sent at maximum transmission power, prevent the neighbouring nodes from transmitting their DATA frames at power levels higher than a computed threshold, while allowing them to transmit at power levels less than that threshold. Reduced energy consumption is achieved by adjusting the node transmission power to the minimum required value for reliable reception at the receiving node, while increase in network throughput is achieved by allowing more transmissions to take place simultaneously. The slow start principle used for calculating the appropriate DATA frames transmission power and the possibility of more simultaneous collision-free transmissions differentiate the SSPC protocol from the other MAC solutions proposed for IEEE 802.11. Simulation results indicate that the SSPC protocol achieves a significant reduction in power consumption, average packet delay and frequency of RTS frame collisions, and a significant increase in network throughput and received-to-sent packets ratio compared to IEEE 802.11 protocol.  相似文献   

15.
Although there has been considerable work on the performance evaluation of collision avoidance schemes, most analytical work is confined to single-hop ad hoc networks or networks with very few hidden terminals. We present the first analytical model to derive the saturation throughput of collision avoidance protocols in multi-hop ad hoc networks with nodes randomly placed according to a two-dimensional Poisson distribution. We show that the sender-initiated collision-avoidance scheme achieves much higher throughput than the ideal carrier sense multiple access scheme with a separate channel for acknowledgments. More importantly, we show that the collision-avoidance scheme can accommodate much fewer competing nodes within a region in a network infested with hidden terminals than in a fully-connected network, if reasonable throughput is to be maintained. Simulations of the IEEE 802.11 MAC protocol and one of its variants validate the predictions made in the analysis. It is also shown that the IEEE 802.11 MAC protocol cannot ensure collision-free transmission of data packets and thus throughput can degrade well below what is predicted by the analysis of a correct collision avoidance protocol. Based on these results, a number of improvements are proposed for the IEEE 802.11 MAC protocol.  相似文献   

16.
To support Quality of service (QoS)‐sensitive applications like real‐time video streaming in IEEE 802.11 networks, a MAC layer extension for QoS, IEEE 802.11e, has been recently ratified as a standard. This MAC layer solution, however, addresses only the issue of prioritized access to the wireless medium and leaves such issues as QoS guarantee and admission control to the traffic control systems at the higher layers. This paper presents an IP‐layer traffic control system for IEEE 802.11 networks based on available bandwidth estimation. We build an analytical model for estimating the available bandwidth by extending an existing throughput computation model, and implement a traffic control system that provides QoS guarantees and admission control by utilizing the estimated available bandwidth information. We have conducted extensive performance evaluation of the proposed scheme via both simulations and measurements in the real test‐bed. The experiment results show that our estimation model and traffic control system work accurately and effectively in various network load conditions without IEEE 802.11e. The presence of IEEE 802.11e will allow even more efficient QoS provision, as the proposed scheme and the MAC layer QoS support will complement each other. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
The IEEE 802.11 e medium access control (MAC) for quality-of-service (QoS) support in 802.11 networks defines burst transmission and new acknowledgment (ACK) operations as optional mechanisms for increasing channel utilization. In this paper, we investigate how the performance of these new features is affected by the presence of fiber delay in high speed Wireless LAN (WLAN) over fiber networks. It is shown that the negative effect of the fiber delay on the throughput performance of the 802.11 MAC protocol can be significantly reduced when burst transmission is used with the block or the no ACK policies.  相似文献   

18.
无线自组网中的移动节点大多依靠电池提供能量,因此能量是影响无线自组网性能的一个很大的瓶颈,作为事实上的无线自组网媒体接入协议,802.11并没有动态调整传输功率的能力,大大限制了网络的生存时间。采用功率控制可以提高节点的功率使用效率,减少相邻节点间的干扰,改善网络的性能。在802.11基础上提出一种基于信噪比的动态传输功率控制算法。通过进行计算机仿真,与802.11协议相比,在保持吞吐量性能的前提下,大大减少了节点的功率消耗,提高了节点的能量利用率。  相似文献   

19.
基于IEEE 802.11高速无线局域网的速率自适应MAC协议研究   总被引:3,自引:0,他引:3  
目前的IEEE 802.11标准在物理层提供了对多种发送速率的支持,然而在MAC层却没有规定速率自适应的方法。该文研究了高速IEEE 802.11 无线局域网中的速率自适应方案。首先,提出了EACK协议,EACK使用基本速率发送MAC头,并在ACK帧中携带信道信息,因而能够较快速地响应信道的变化,同时具有少的开销;其次,在EACK基础上,提出了一种恒定发送时间(CEACK)的策略,CEACK能够克服传统IEEE 802.11 DCF MAC协议的理论吞吐量上限,并且具有更好的时间公平性能,能够应用于高速的无线局域网。  相似文献   

20.
The IEEE 802.11 MAC protocol is the standard for wireless LANs; it is widely used in testbeds and simulations for wireless multihop ad hoc networks. However, this protocol was not designed for multihop networks. Although it can support some ad hoc network architecture, it is not intended to support the wireless mobile ad hoc network, in which multihop connectivity is one of the most prominent features. In this article we focus on the following question: can the IEEE 802.11 MAC protocol function well in multihop networks? By presenting several serious problems encountered in an IEEE 802.11-based multihop network and revealing the in-depth cause of these problems, we conclude that the current version of this wireless LAN protocol does not function well in multihop ad hoc networks. We thus doubt whether the WaveLAN-based system is workable as a mobile ad hoc testbed  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号