首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
基于多分辨形态梯度的行波距离保护方案   总被引:3,自引:1,他引:3  
白嘉  徐玉琴  尚国伟 《高电压技术》2006,32(10):121-123,133
为解决现有的行波距离保护方案无法有效识别正方向区内、外故障,利用超高压输电线路母线杂散电容及线路末端阻波器对高频暂态信号强烈的屏蔽作用而导致行波通过母线前后波前时间的差异,提出一种基于行波波前时间比较法的行波距离保护新方法,并使用多分辨形态梯度提取波前时间构成保护方案。理论分析与仿真研究证明,这种保护能正确识别正方向区内、外故障,有较高的准确性和可靠性。  相似文献   

2.
高压输电线路发生故障后产生的暂态电流是一个包含故障信息的宽带信号.为了提取故障信息,先用平行结构的多速率滤波器组,将故障暂态电流信号并行分割为M个窄带信号,然后算出各窄带分量的能量.根据不同频带能量的比值,提出一种基于余弦调制滤波器组(CMFB)的暂态保护判据,进而提出一种故障诊断方案.此外,还对高压输电线路在不同时刻和位置的故障情况进行了仿真,仿真结果表明该诊断方案可行,而且由于对暂态电流信号的不同频带分量并行同步处理,因而实时性好.  相似文献   

3.
This paper proposes a new technique for transformer protection. The technique is concerned with the detection of the fault generated high frequency current transients by means of a specially designed relay unit. The relay, tuned to a band of high frequencies, is used to capture the transient currents from both sides of the transformer; the differential and average currents between the two sides are then calculated. The spectral energies of these current signals are extracted to produce the operate and restraint signals; a comparison between the levels of the two signals determines whether the fault is internal or external to the protected zone. A new technique for inrush detection has also been proposed in this paper. The technique detects inrush current by using the high frequency components contained in its current transient signal. The restraint signal is derived by computing the ratio of the spectral energy of the transient signal to the fundamental current. A comparison between the level of restraint signal and a pre-defined threshold determines whether a magnetizing inrush is in process. Simulation studies with respect to different fault and inrush conditions have been conducted, and the results prove that the proposed technique is able to offer fast responses in protection and accurately discriminate between inrush magnetizing current and internal faults  相似文献   

4.
基于高频暂态分量进行相关分析及模糊推理的选相新方法   总被引:4,自引:5,他引:4  
提出一种利用故障分量中高频分量实现故障选相的新原理。该原理直接利用电流互感器饱和前传变的暂态高频电流,使用小波提取相应频段暂态信号特征,对提取的信号特征进行相关分析,使用模糊集合对相关系数的隶属度综合评判进行选相。用该原理实现的选相装置可以配合基于暂态量的单端保护使用,具有超高速的特点,且不受过渡电阻、故障初始角及系统振荡的影响。对于三相换位不完全造成模量不平衡的情况也能进行正确选相。对某典型500 kV线路进行各种故障类型仿真,取得了满意的效果。  相似文献   

5.
This paper presents a new technique for high-speed protection of transmission lines, the positional protection technique. The technique uses a fault transient detector unit at the relaying point to capture fault generated high frequency transient signals contained in the primary currents. The decision to trip is based on the relative arrival times of these high frequency components as they propagate through the system. Extensive simulation studies of technique were carried out to examine the response to different power system and fault conditions. Results show that the scheme is insensitive to fault type, fault resistance, fault inception angle and system source configuration, and that it is able to offer both very high accuracy and speed in fault detection  相似文献   

6.
输电线路故障后产生的电压故障行波是一个宽频带信号。由于电容式电压互感器不能有效传变宽频带电压行波信号,给行波保护投入电力系统实际应用带来困难。文中应用数学分析工具——小波变换,以及小波变换的多分辨率分析特性,将电压故障行波分解成多个频带信号,并研究了各个频带下电压故障行波初始极性之间的关系。研究结果表明:电压故障行波各...  相似文献   

7.
行波信号的有效提取是高压电网行波保护和行波故障定位的前提,针对传统电容式电压互感器不能传变暂态高频信号的缺陷,提出了一种电压行波信号的提取方法。利用电容式电压互感器或电流互感器的套管末屏电容,设计了电压行波提取电路,考查了其频率响应特性。利用EMTDC分别仿真了提取电路对不同频率段、不同故障初始角和不同故障电阻的暂态电压信号提取响应,理论分析和仿真结果表明:该方法能够有效地提取暂态高频信号,正确反映一次侧特定频带的电压行波特征,很好地解决了行波保护或暂态量保护及故障定位中暂态电压行波提取的难题。  相似文献   

8.
直流滤波器是高压直流输电系统不可或缺的设备。目前直流滤波器保护都采用单一的电流量保护,并且大都利用调谐频次电流作为保护量。当滤波器靠近首端接地故障时,滤波器调谐频率发生较大偏移,调谐频次电流减小,使得滤波器差动保护差流较小,灵敏度不足,保护可能出现拒动。提出了滤波器谐波阻抗保护,保护同时接入电压和电流作为保护量,计算滤波器较小调谐频次的谐波阻抗大小作为保护判据,滤波器靠近首端接地故障时保护灵敏度高,并可以反应多种故障,也可作为滤波器失谐监视判据。通过PSCAD仿真验证了该判据的可行性和可靠性,这将对直流滤波器进行更加完善可靠的保护。  相似文献   

9.
为提高传统暂态保护方法的可靠性,综合运用宽频带暂态信号在时域和频域上的故障信息,提出一种输电线路保护新方法。该方法利用S变换提取宽频带暂态信号在不同时段不同频带下的故障信息,通过构造时频矩阵来反映暂态信号的时频变化特性;利用奇异值分解提取时频矩阵的时频特征,并减少矩阵冗余量;将奇异值矩阵与样本库矩阵进行时频特征匹配,计算矩阵相似度;根据矩阵相似度判别区内外故障。仿真结果表明,该暂态保护方法能准确快速识别区内外故障。  相似文献   

10.
Previous papers have described a method for the detection of arcing fallen distribution primiary conductor faults using the electrical noise in feeder current above 2kHz. While this method provided improved detection of such faults, this high frequency signal often would not propagate past capacitor banks. In the present paper, we describe a technique for the identification of arcing high impedance faults using burst noise signals at frequencies near the power system fundamental and low order harmonics. Arcing generates non-synchronous burst noise signals which approximate white noise, providing a signal which can be differentiated from synchronous power system signals in the frequency bands of interest. The primary advantage of monitoring frequencies near the fundamental is that this arcing fault signal at low frequencies will exhibit little attenuation from capacitor banks or other sources. This paper provides preliminary results that arcing faults can be detected effectively using frequency components below 60 Hz or between low order harmonics of 60 Hz. The technique is demonstrated through analysis of analog signals recorded during numerouis staged utility downed conductor tests.  相似文献   

11.
最小熵反褶积是检测轴承故障或齿轮故障信号等类脉冲信号的一种有效技术,但是该方法仍存在一个不足,即在使用前须设置滤波器的长度,而该参数值的选择一般只能通过技术人员的经验选择。针对这个局限性,提出了一个基于峭度、排列熵与信号能量的滤波器长度选择准则。通过该准则,可以有效地挑选出最优的滤波器长度,从而更好地对故障信号进行滤波。随后,一种增强的能量算子,包络-导数能量算子用来对过滤后的故障信号进行故障特征频率的提取。实验结果表明,该方法不仅可以有效地提取出轴承故障特征频率,并且与一些传统方法相比,该方法可以大大突出故障特征频率的幅值。  相似文献   

12.
Synopsis

This paper presents a new recursive discrete-time filter for calculating the impedance from digitized voltage and current samples from the relay location, The transmission line voltage and current signals during a fault are modelled as a sum of decaying dc, and components of fundamental frequency and higher harmonic frequency components. The recursive discrete-time filter interpolates the signal samples and generates filter coefficiencs either by using spectral observation or functional expansion techniques. Both the algorithms are tested by using the fault data recorded at the Saskatchewan Power Corporation producing fast and reliable tripping conditions.  相似文献   

13.
A novel method for estimating the instantaneous phasor of a fault current signal is proposed for high-speed distance protection immune to a DC-offset. The method uses a modified notch filter in order to eliminate the fundamental frequency component from the fault current signal. Since the output of the modified notch filter is the delayed DC-offset, delay compensation results in the same waveform as the original DC-offset. Subtracting the obtained DC-offset from the fault current signal yields a sinusoidal waveform, which becomes the real part of the instantaneous phasor. The imaginary part of the instantaneous phasor is based on the first difference of the fault current signal. Since a DC-offset also appears in the first difference, the DC-offset is removed from the first difference using the results of the delay compensation. The performance of the proposed method was evaluated for a–phase to ground faults on a 345 kV 100 km overhead transmission line. The Electromagnetic Transient Program was used to generate fault current signals for different fault locations and fault inception angles. The performance evaluation showed that the proposed method can estimate the instantaneous phasor of a fault current signal with high speed and high accuracy. The paper concludes by describing the hardware implementation of the proposed method on a prototype unit based on a digital signal processor.  相似文献   

14.
三角样条小波TSW(Trigonometric Spline Waelet)是作者首先提出适合电力系统信号处理的小波函数,它是对称的半正交小波。基于它的小波包称为半正交小波包,与Daubechies小波迭代算法不同,三角样条小波是对称的或反对称的小波,基于它的滤波器具有线性相位或广义线性相位,因而可避免信号相位失真,实验结果表明半正交小波包对故障信号的分解,压缩,重构比Daubechies小波包效果明显,另外对故障信号的小波包分解的不同频带的特征值和正常信号的特征值进行比较,可以对故障信号进行谐波检测和定位。  相似文献   

15.
This paper proposes a pattern recognition based differential spectral energy protection scheme for ac microgrids using a Fourier kernel based fast sparse time-frequency representation (SST or simply the sparse S-Transform). The average and differential current components are passed through a change detection filter, which senses the instant of fault inception and registers a change detection point (CDP). Subsequently, if CDP is registered for one or more phases, then half cycle data samples of the average and differential currents on either side of the CDP are passed through the proposed SST technique, which generates their respective spectral energies and a simple comparison between them detects the occurrence and type of the fault. The SST technique is also used to provide voltage and current phasors and the frequency during faults which is further utilized to estimate the fault location. The proposed technique as compared to conventional differential current protection scheme is quicker in fault detection and classification, which is least effected from bias setting, has a faster relay trip response (less than one cycle from fault incipient) and a better accuracy in fault location. The significance and accuracy of the proposed scheme have been verified extensively for faults in a standard microgrid system, subjected to a large number of operating conditions and the outputs vindicate it to be a potential candidate for real time applications  相似文献   

16.
高压直流输电线路及其边界对故障暂态信号高频分量都有明显的衰减作用,这一故障特征被广泛运用于暂态保护,且有研究显示,相较于线路边界,长线路对故障暂态高频分量的衰减作用可能更大,为避免这种情况引起的保护误动,目前常用的故障特征提取方式为利用不同尺度的小波变换获取暂态信号能量比。但基于小波变换的暂态保护存在算法相对复杂,基波选取模式不统一等问题。因此提出一种新的比值算法,针对故障暂态信号中的能量比,用全电流代替低频分量,简化了直流线路故障信息处理过程,由此设计出了新的直流线路故障定位方法,并且利用该判据可直接实现故障极判断。在MATLAB中进行了大量仿真验证,证明该保护算法可以正确反映出故障特征,逻辑简单,并且能够迅速可靠动作。  相似文献   

17.
This paper proposes a pattern recognition based differential spectral energy protection scheme for ac microgrids using a Fourier kernel based fast sparse time-frequency representation (SST or simply the sparse S-Transform). The average and differential current components are passed through a change detection filter, which senses the instant of fault inception and registers a change detection point (CDP). Subsequently, if CDP is registered for one or more phases, then half cycle data samples of the average and differential currents on either side of the CDP are passed through the proposed SST technique, which generates their respective spectral energies and a simple comparison between them detects the occurrence and type of the fault. The SST technique is also used to provide voltage and current phasors and the frequency during faults which is further utilized to estimate the fault location. The proposed technique as compared to conventional differential current protection scheme is quicker in fault detection and classification, which is least effected from bias setting, has a faster relay trip response (less than one cycle from fault incipient) and a better accuracy in fault location. The significance and accuracy of the proposed scheme have been verified extensively for faults in a standard microgrid system, subjected to a large number of operating conditions and the outputs vindicate it to be a potential candidate for real time applications  相似文献   

18.
A new high-speed protection technique based on fault generated high frequency (HF) voltage signals is developed and applied to the protection of EHV series compensated power transmission lines. It is a nonunit protection technique as it relies totally on locally derived information, but it has the discriminative properties normally associated with unit protection schemes. The protection scheme has been designed using CAD techniques including emulation of analogue interfaces and hardware. It is shown that the new relay scheme is able to overcome many difficult protection problems encountered on such EHV power lines using conventional methods, and discriminates clearly between internal and external faults, producing a fast trip output  相似文献   

19.
In this paper, a novel Fourier filter algorithm for high-accuracy and high-convergence-speed fundamental frequency component calculation of series compensated transmission line is proposed. The performance of digital relaying is highly reliant on the algorithm of digital filtering, especially involving the dc offset and subsynchronous resonance. Input signals of protective relays must be filtered in advance to reject unwanted quantities and retain signal quantities of interest. Accuracy and convergence speed of filter algorithms are essential for protective relays. However, the voltage and current signals contain large harmonics and dc offset during fault intervals. A widely applied filter algorithm, the Discrete Fourier Transform (DFT), can easily eliminate harmonics via simple calculations. The dc offset heavily influences the precision and convergence speed of fundamental frequency component from DFT. Under high resistive fault conditions, the current signals will have subsynchronous resonance. The subsynchronous resonance current and voltage signals influence the performance of DFT much more than the dc offset. Although capable of erasing high order harmonics, the low pass filter cannot remove the dc offset and subsynchronous resonance. The Alternative Transient Program (ATP) of the Electromagnetic Transients Program (EMPT) is utilized to simulate the transient responses of series compensated transmission lines during the fault period. Adopting the proposed algorithm in distance relays effectively locks the dc offset and subsynchronous resonance signals and quickly estimates the accurate fundamental frequency components.  相似文献   

20.
配电网单相接地故障选线的一种新方法   总被引:13,自引:8,他引:13  
为了提取故障暂态信号的相位谱特征以进行配电网单相接地故障选线,引入了零序电流解析信号的小波包分解。信号的解析表达形式可以更好地描述信号的幅值、相位和瞬时频率随时间变化的规律;它有着比原信号增大一倍的幅值谱、和原信号相同的相位谱和瞬时频率。小波包克服了小波变换不能对高频序列进一步分解的缺陷,在时域和频域上皆具有良好的局部化特性,可以聚焦被分析信号不同频带的时域特性。通过对构造的零序电流解析信号进行小波包分解,提取在适当频带的信号相位谱,依据故障线路和非故障线路相位谱的不同进行故障选线。理论分析和仿真结果表明:这种基于零序电流解析信号的小波包分解所提取暂态信号相位谱的选线判据具有很高的灵敏性和可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号